Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14679–14688 | Cite as

Acetic acid sensing of Mg-doped ZnO thin films fabricated by the sol–gel method

  • Vahid Khorramshahi
  • Javad Karamdel
  • Ramin Yousefi
Article

Abstract

Acetic acid vapor thin film gas sensor was developed by synthesizing Mg-doped ZnO nanoparticles using a low cost and facile sol–gel route and were characterized using field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and photoluminescence analysis. Morphological characterizations showed the formation of well-defined and highly crystalline ZnO nanoparticles on Si(100)/SiO2 substrate. Gas sensing characterization of dip coated Mg-doped ZnO thin films were performed in temperature range of 150–400 °C at different acetic acid vapor concentrations. At 300 °C, the sensitivity for pure ZnO, Zn0.98Mg0.02O and Zn0.94Mg0.06O samples at concentration of 200 ppm of acetic acid were 124, 78 and 67%, respectively. The highest sensitivity for Zn0.96Mg0.04O sample was 136% at the same vapor concentration and temperature. It showed a fast response time and recovery time (145 and 110 s, respectively).

Notes

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.

References

  1. 1.
    L. Wang, Y. Kang, X. Liu et al., ZnO nanorod gas sensor for ethanol detection. Sens. Actuators B 162, 237–243 (2012)CrossRefGoogle Scholar
  2. 2.
    R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett. 7, 97–120 (2015).  https://doi.org/10.1007/s40820-014-0023-3 CrossRefGoogle Scholar
  3. 3.
    R.K. Malik, R. Khanna, G.L. Sharma et al., Hydrogen sensing properties of copper-doped zinc oxide thin films. IEEE Sens. J. 15, 7021–7028 (2015)CrossRefGoogle Scholar
  4. 4.
    B. Mandal, R. Singh, S. Mukherjee, Highly selective and sensitive methanol sensor using rose-like ZnO microcube and MoO3 micrograss based composite. IEEE Sens. J. 18, 2659–2666 (2018)CrossRefGoogle Scholar
  5. 5.
    J. Chen, X. Pan, F. Boussaid et al., Breath level acetone discrimination through temperature modulation of a hierarchical ZnO gas sensor. IEEE Sens. Lett. 1, 1–4 (2017)CrossRefGoogle Scholar
  6. 6.
    W. Wang, Y. Tian, X. Wang et al., Ethanol sensing properties of porous ZnO spheres via hydrothermal route. J. Mater. Sci. 48, 3232–3238 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Hu, F. Gao, S. Sang et al., Optimization of Pd content in ZnO microstructures for high-performance gas detection. J. Mater. Sci. 50, 1935–1942 (2015)CrossRefGoogle Scholar
  8. 8.
    A. Hastir, R.L. Opila, N. Kohli et al., Deposition, characterization and gas sensors application of RF magnetron-sputtered terbium-doped ZnO films. J. Mater. Sci. 52, 8502–8517 (2017)CrossRefGoogle Scholar
  9. 9.
    B. Yuliarto, M.F. Ramadhani, N.L.W. Septiani et al., Enhancement of SO2 gas sensing performance using ZnO nanorod thin films: the role of deposition time. J. Mater. Sci. 52, 4543–4554 (2017)CrossRefGoogle Scholar
  10. 10.
    M.T. Hosseinnejad, M. Ghoranneviss, M.R. Hantehzadeh, E. Darabi, Growth, characterization, and investigation of H2 gas sensing performance of Al-doped ZnO thin films synthesized by plasma focus device. J. Mater. Sci. Mater. Electron. 27, 11308–11318 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Hjiri, N. Zahmouli, R. Dhahri et al., Doped-ZnO nanoparticles for selective gas sensors. J. Mater. Sci. Mater. Electron. 28, 9667–9674 (2017)CrossRefGoogle Scholar
  12. 12.
    G. Eranna, Metal Oxide Nanostructures as Gas Sensing Devices (CRC Press, Boca Raton, 2011)CrossRefGoogle Scholar
  13. 13.
    G. Neri, First fifty years of chemoresistive gas sensors. Chemosensors 3, 1–20 (2015)CrossRefGoogle Scholar
  14. 14.
    Q. Jia, H. Ji, Y. Zhang et al., Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application. J. Hazard. Mater. 276, 262–270 (2014)CrossRefGoogle Scholar
  15. 15.
    X. Wang, F. Sun, Y. Duan et al., Highly sensitive, temperature-dependent gas sensor based on hierarchical ZnO nanorod arrays. J. Mater. Chem. C 3, 11397–11405 (2015)CrossRefGoogle Scholar
  16. 16.
    M.-R. Yu, R.-J. Wu, M. Chavali, Effect of “Pt”loading in ZnO–CuO hetero-junction material sensing carbon monoxide at room temperature. Sens. Actuators B 153, 321–328 (2011)CrossRefGoogle Scholar
  17. 17.
    P.P. Sahay, Zinc oxide thin film gas sensor for detection of acetone. J. Mater. Sci. 40, 4383–4385 (2005)CrossRefGoogle Scholar
  18. 18.
    S. Christoulakis, M. Suchea, M. Katharakis et al., ZnO nanostructured transparent thin films by PLD. Rev. Adv. Mater. Sci. 10, 331–334 (2005)Google Scholar
  19. 19.
    M. Azuma, M. Ichimura, Fabrication of ZnO thin films by the photochemical deposition method. Mater. Res. Bull. 43, 3537–3542 (2008)CrossRefGoogle Scholar
  20. 20.
    S.P. Wang, C.X. Shan, B. Yao et al., Electrical and optical properties of ZnO films grown by molecular beam epitaxy. Appl. Surf. Sci. 255, 4913–4915 (2009)CrossRefGoogle Scholar
  21. 21.
    R. Yousefi, F. Jamali-Sheini, A.K. Zak, A comparative study of the properties of ZnO nano/microstructures grown using two types of thermal evaporation set-up conditions. Chem. Vap. Depos. 18, 215–220 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Dwivedi, J. Bhargava, A. Sharma et al., CO sensor using ZnO thin film derived by RF magnetron sputtering technique. IEEE Sens. J. 14, 1577–1582 (2014)CrossRefGoogle Scholar
  23. 23.
    M. Kashif, Y. Al-Douri, U. Hashim et al., Characterisation, analysis and optical properties of nanostructure ZnO using the sol–gel method. Micro Nano Lett. 7, 163–167 (2012)CrossRefGoogle Scholar
  24. 24.
    C. Jagadish, S.J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications (Elsevier, Oxford, 2011)Google Scholar
  25. 25.
    T.T. Trinh, N.H. Tu, H.H. Le et al., Improving the ethanol sensing of ZnO nano-particle thin films—the correlation between the grain size and the sensing mechanism. Sens. Actuators B 152, 73–81 (2011)CrossRefGoogle Scholar
  26. 26.
    M.K. Chakravarthi, B. Bharath, DIP coated thick films of ZNO and its ethanol sensing properties, in 8th International Symposium on Mechatronics and its Applications (ISMA), pp 1–5, 2012Google Scholar
  27. 27.
    X.L. Cheng, H. Zhao, L.H. Huo et al., ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property. Sens. Actuators B 102, 248–252 (2004)CrossRefGoogle Scholar
  28. 28.
    R.S. Ganesh, E. Durgadevi, M. Navaneethan et al., Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres. J. Alloys Compd. 721, 182–190 (2017)CrossRefGoogle Scholar
  29. 29.
    R. Zhang, W. Pang, Z. Feng et al., Enabling selectivity and fast recovery of ZnO nanowire gas sensors through resistive switching. Sens. Actuators B 238, 357–363 (2017)CrossRefGoogle Scholar
  30. 30.
    D. Sett, D. Basak, Highly enhanced H2 gas sensing characteristics of Co: ZnO nanorods and its mechanism. Sens. Actuators B 243, 475–483 (2017)CrossRefGoogle Scholar
  31. 31.
    F. Meng, N. Hou, Z. Jin et al., Sub-ppb detection of acetone using Au-modified flower-like hierarchical ZnO structures. Sens. Actuators B 219, 209–217 (2015)CrossRefGoogle Scholar
  32. 32.
    F. Meng, H. Zheng, Y. Sun et al., UV-activated room temperature single-sheet ZnO gas sensor. Micro Nano Lett. 12, 813–817 (2017)CrossRefGoogle Scholar
  33. 33.
    C.B. Jacobs, A.B. Maksov, E.S. Muckley et al., UV-activated ZnO films on a flexible substrate for room temperature O2 and H2O sensing. Sci. Rep. 7, 6053 (2017)CrossRefGoogle Scholar
  34. 34.
    J. Gong, Y. Li, X. Chai et al., UV-light-activated ZnO fibers for organic gas sensing at room temperature. J. Phys. Chem. C 114, 1293–1298 (2009)CrossRefGoogle Scholar
  35. 35.
    E. Espid, F. Taghipour, UV-LED photo-activated chemical gas sensors: a review. Crit. Rev. Solid State Mater. Sci. 42, 416–432 (2017)CrossRefGoogle Scholar
  36. 36.
    M. Hjiri, R. Dhahri, K. Omri et al., Effect of indium doping on ZnO based-gas sensor for CO. Mater. Sci. Semicond. Process. 27, 319–325 (2014).  https://doi.org/10.1016/j.mssp.2014.07.009 CrossRefGoogle Scholar
  37. 37.
    L. Giancaterini, C. Cantalini, M. Cittadini et al., Au and Pt nanoparticles effects on the optical and electrical gas sensing properties of sol–gel-based ZnO thin-film sensors. IEEE Sens. J. 15, 1068–1076 (2015)CrossRefGoogle Scholar
  38. 38.
    S.M. Hosseini, I.A. Sarsari, P. Kameli, H. Salamati, Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. J. Alloys Compd. 640, 408–415 (2015)CrossRefGoogle Scholar
  39. 39.
    N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Acetylene sensor based on Pt/ZnO thick films as prepared by flame spray pyrolysis. Sens. Actuators B 152, 155–161 (2011)CrossRefGoogle Scholar
  40. 40.
    S. Wei, Y. Yu, M. Zhou, CO gas sensing of Pd-doped ZnO nanofibers synthesized by electrospinning method. Mater. Lett. 64, 2284–2286 (2010)CrossRefGoogle Scholar
  41. 41.
    C. Dong, X. Liu, B. Han et al., Nonaqueous synthesis of Ag-functionalized In2O3/ZnO nanocomposites for highly sensitive formaldehyde sensor. Sens. Actuators B 224, 193–200 (2016)CrossRefGoogle Scholar
  42. 42.
    J. Guo, J. Zhang, M. Zhu et al., High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sens. Actuators B 199, 339–345 (2014)CrossRefGoogle Scholar
  43. 43.
    F. Meng, H. Zheng, Y. Sun et al., Trimethylamine sensors based on Au-modified hierarchical porous single-crystalline ZnO nanosheets. Sensors 17, 1478 (2017)CrossRefGoogle Scholar
  44. 44.
    F. Meng, N. Hou, Z. Jin et al., Ag-decorated ultra-thin porous single-crystalline ZnO nanosheets prepared by sunlight induced solvent reduction and their highly sensitive detection of ethanol. Sens. Actuators B 209, 975–982 (2015).  https://doi.org/10.1016/j.snb.2014.12.078 CrossRefGoogle Scholar
  45. 45.
    Q. Deng, S. Gao, T. Lei et al., Temperature & light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensor. Sens. Actuators B 247, 903–915 (2017)CrossRefGoogle Scholar
  46. 46.
    H. Gong, J.Q. Hu, J.H. Wang et al., Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens. Actuators B 115, 247–251 (2006)CrossRefGoogle Scholar
  47. 47.
    A.J. Chen, X.M. Wu, Z.D. Sha et al., Structure and photoluminescence properties of Fe-doped ZnO thin films. J. Phys. D 39, 4762 (2006)CrossRefGoogle Scholar
  48. 48.
    S.-Y. Kuo, W.-C. Chen, F.-I. Lai et al., Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. J. Cryst. Growth 287, 78–84 (2006)CrossRefGoogle Scholar
  49. 49.
    R.F. Dezfuly, R. Yousefi, F. Jamali-Sheini, Photocurrent applications of Zn(1−x)CdxO/rGO nanocomposites. Ceram. Int. 42, 7455–7461 (2016)CrossRefGoogle Scholar
  50. 50.
    C.H. Kwak, H.S. Woo, F. Abdel-Hady et al., Vapor-phase growth of urchin-like Mg-doped ZnO nanowire networks and their application to highly sensitive and selective detection of ethanol. Sens. Actuators B 223, 527–534 (2016).  https://doi.org/10.1016/j.snb.2015.09.120 CrossRefGoogle Scholar
  51. 51.
    J. Xu, J. Han, Y. Zhang et al., Studies on alcohol sensing mechanism of ZnO based gas sensors. Sens. Actuators B 132, 334–339 (2008).  https://doi.org/10.1016/j.snb.2008.01.062 CrossRefGoogle Scholar
  52. 52.
    C. Jin, S. Park, H. Kim et al., CO gas-sensor based on Pt-functionalized Mg-doped ZnO nanowires. Bull. Korean Chem. Soc. 33, 1993–1997 (2012)CrossRefGoogle Scholar
  53. 53.
    A.J. Kulandaisamy, J.R. Reddy, P. Srinivasan et al., Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping. J. Alloys Compd. 688, 422–429 (2016).  https://doi.org/10.1016/j.jallcom.2016.07.050 CrossRefGoogle Scholar
  54. 54.
    W. Chebil, M.A. Boukadhaba, I. Madhi et al., Structural, optical and NO2 gas sensing properties of ZnMgO thin films prepared by the sol gel method. Phys. B 505, 9–16 (2017).  https://doi.org/10.1016/j.physb.2016.10.028 CrossRefGoogle Scholar
  55. 55.
    K. Karthick, D. Srinivasan, J.B. Christopher, Fabrication of highly c-axis Mg doped ZnO on c-cut sapphire substrate by rf sputtering for hydrogen sensing. J. Mater. Sci. Mater. Electron. 28, 11979–11986 (2017)CrossRefGoogle Scholar
  56. 56.
    K. Vijayalakshmi, K. Karthick, Growth of highly c-axis oriented Mg:ZnO nanorods on Al2O3 substrate towards high-performance H2 sensing. Int. J. Hydrogen Energy 39, 7165–7172 (2014).  https://doi.org/10.1016/j.ijhydene.2014.02.123 CrossRefGoogle Scholar
  57. 57.
    Y. Liu, T. Hang, Y. Xie et al., Effect of Mg doping on the hydrogen-sensing characteristics of ZnO thin films. Sens. Actuators B 160, 266–270 (2011).  https://doi.org/10.1016/j.snb.2011.07.046 CrossRefGoogle Scholar
  58. 58.
    A. Kharatzadeh, F. Jamali-Sheini, R. Yousefi, Excellent photocatalytic performance of Zn(1−x)MgxO/rGO nanocomposites under natural sunlight irradiation and their photovoltaic and UV detector applications. Mater. Des. 107, 47–55 (2016)CrossRefGoogle Scholar
  59. 59.
    J. Zhang, F. Liao, Y. Zhu et al., Visible-light-enhanced gas sensing of CdSxSe1−x nanoribbons for acetic acid at room temperature. Sens. Actuators B 215, 497–503 (2015)CrossRefGoogle Scholar
  60. 60.
    C. Wang, S. Ma, A. Sun et al., Characterization of electrospun Pr-doped ZnO nanostructure for acetic acid sensor. Sens. Actuators B 193, 326–333 (2014)CrossRefGoogle Scholar
  61. 61.
    X.B. Li, Q.Q. Zhang, S.Y. Ma et al., Microstructure optimization and gas sensing improvement of ZnO spherical structure through yttrium doping. Sens. Actuators B 195, 526–533 (2014)CrossRefGoogle Scholar
  62. 62.
    Z. Jiao, M. Wu, Z. Qin et al., Nano zinc ferrite acetic acid gas sensor for smuggled drug detection in southern China. Sens. Transducers Mag. 37, 24–29 (2003)Google Scholar
  63. 63.
    N. Al-Hardan, M.J. Abdullah, A.A. Aziz, H. Ahmad, ZnO gas sensor for testing vinegar acid concentrations. Sains Malays. 40, 67–70 (2011)Google Scholar
  64. 64.
    A. Sinha, S. Chakrabarti, B. Chaudhuri et al., Oxidative degradation of strong acetic acid liquor in wastewater emanating from hazardous industries. Ind. Eng. Chem. Res. 46, 3101–3107 (2007)CrossRefGoogle Scholar
  65. 65.
    R. Yousefi, J. Beheshtian, S.M. Seyed-Talebi et al., Experimental and theoretical study of enhanced photocatalytic activity of Mg-doped ZnO NPs and ZnO/rGO nanocomposites. Chem.-Asian J. 13, 194–203 (2018).  https://doi.org/10.1002/asia.201701423 CrossRefGoogle Scholar
  66. 66.
    J.H. Li, Y.C. Liu, C.L. Shao et al., Effects of thermal annealing on the structural and optical properties of MgxZn1−xO nanocrystals. J. Colloid Interface Sci. 283, 513–517 (2005)CrossRefGoogle Scholar
  67. 67.
    G. Ning, X. Zhao, J. Li, Structure and optical properties of MgxZn1−xO nanoparticles prepared by sol–gel method. Opt. Mater. 27, 1–5 (2004)CrossRefGoogle Scholar
  68. 68.
    K. Vijayalakshmi, K. Karthick, Influence of annealing on the photoluminescence of nanocrystalline ZnO synthesized by microwave processing. Philos. Mag. Lett. 92, 710–717 (2012)CrossRefGoogle Scholar
  69. 69.
    R. Dhahri, M. Hjiri, L. El Mir et al., CO sensing characteristics of In-doped ZnO semiconductor nanoparticles. J. Sci. Adv. Mater. Devices 2, 34–40 (2017)CrossRefGoogle Scholar
  70. 70.
    A.S.M. Iftekhar Uddin, D.T. Phan, G.S. Chung, Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sens. Actuators B 207, 362–369 (2015).  https://doi.org/10.1016/j.snb.2014.10.091 CrossRefGoogle Scholar
  71. 71.
    M. Takata, D. Tsubone, H. Yanagida, Dependence of electrical conductivity of ZnO on degree of sintering. J. Am. Ceram. Soc. 59, 4–8 (1976)CrossRefGoogle Scholar
  72. 72.
    A. Sáaedi, R. Yousefi, Improvement of gas-sensing performance of ZnO nanorods by group-I elements doping. J. Appl. Phys. 122, 224505 (2017)CrossRefGoogle Scholar
  73. 73.
    S. Fujitsu, K. Koumoto, H. Yanagida et al., Change in the oxidation state of the adsorbed oxygen equilibrated at 25 C on ZnO surface during room temperature annealing after rapid quenching. Jpn. J. Appl. Phys. 38, 1534 (1999)CrossRefGoogle Scholar
  74. 74.
    L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO–nanostructures, defects, and devices. Mater. Today 10, 40–48 (2007)CrossRefGoogle Scholar
  75. 75.
    J. Xu, Q. Pan, Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor. Sens. Actuators B 66, 277–279 (2000)CrossRefGoogle Scholar
  76. 76.
    M.A. Carpenter, S. Mathur, A. Kolmakov, Metal Oxide Nanomaterials for Chemical Sensors (Springer, New York, 2012)Google Scholar
  77. 77.
    D. Mishra, A. Srivastava, A. Srivastava, R.K. Shukla, Bead structured nanocrystalline ZnO thin films: synthesis and LPG sensing properties. Appl. Surf. Sci. 255, 2947–2950 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringArak Branch, Islamic Azad UniversityArakIran
  2. 2.Department of Electrical EngineeringSouth Tehran Branch, Islamic Azad UniversityTehranIran
  3. 3.Department of PhysicsMasjed-Soleiman Branch, Islamic Azad University (I.A.U.)Masjed-SoleimanIran

Personalised recommendations