Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14657–14667 | Cite as

Hydrothermal synthesis of nickel doped cobalt ferrite nanoparticles: optical and magnetic properties

  • R. S. Melo
  • P. Banerjee
  • A. FrancoJr.
Article
  • 189 Downloads

Abstract

Nickel-doped cobalt ferrite \([{\text {Co}}_{1- x }\hbox {Ni}_{ x }\hbox {Fe}_{2}\hbox {O}_{4} \,(0\le x\le 1)]\) nanoparticles are synthesized by means of hydrothermal method. The structural, morphological and microstructural characterization revealed crystallite size was roughly spherical for lower nickel concentration while for higher ones in diamond shape consisting of nanosized grains. The optical band-gap (\(E_{g}\)) values decreased with the \({\text {Ni}}^{2+}\) ions (x) concentration being 2.94 and 2.51 eV for \(x=0\) and \(x=1\), respectively. The presence of nickel in the cobalt ferrite structure affected the magnetic properties. For instance, the saturation magnetization, \(M_{s}\) and remanent magnetization, \(M_{r}\) decreased from 369 to 256 emu cm−3 and 131–45 emu cm−3 for \(x=0\) and \(x=1\), respectively. The \(M_{s}\) data was discussed in term of the three-sublattice of non-collinear spin (canted spin) structure proposed by Yafet and Kittel model. On the other hand the coercivity, \(H_{c}\) from 890 Oe to 1590 Oe for \(x=0\) and \(x=0.6\), and sharply dropped to 50 Oe for \(x=1.\) The enhanced coercivity was discussed in terms of particles size, defects and residual strain which may act as pinning centers. The cubic magnetocrystalline constant, \(K_{1}\) determined by using the “law of approach” to saturation decreases with \({\text {Ni}}^{2+}\) ions (x) concentration being \(4.9\times 10^{6}\) and \(2.8\times 10^{6}\) erg cm−3 for \(x=0\) and \(x=1\), respectively. These results were discussed in terms of the inter-particle interactions induced by the presence of \({\text {Ni}}^{2+}\) ions at the octahedral sites which affected the strength of L–S coupling.

Notes

Acknowledgements

We are thankful for the financial support provided by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) under Grant No. 461998/2014-9. One of us (A.F.Jr) is a CNPq fellow under Grant No. 308183/2012-6. The funding was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 300810/2015-6).

References

  1. 1.
    C. Liu, B. Zou, A.J. Rondinone, Z.Z. John, Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J. Am. Chem. Soc. 122(26), 6263–6267 (2000)CrossRefGoogle Scholar
  2. 2.
    M. Rajendran, R.C. Pullar, A.K. Bhattacharya, D. Das, S.N. Chintalapudi, C.K. Majumdar, Magnetic properties of nanocrystalline \(\text{CoFe}_{2}\text{O}_{4}\) powders prepared at room temperature: variation with crystallite size. J. Magn. Magn. Mater. 232(1–2), 71–83 (2001)CrossRefGoogle Scholar
  3. 3.
    K.E. Mooney, J.A. Nelson, M.J. Wagner, Superparamagnetic cobalt ferrite nanocrystals synthesized by alkalide reduction. Chem. Mater. 16, 3155–3161 (2004)CrossRefGoogle Scholar
  4. 4.
    D.H. Lee, H.S. Kim, J.Y. Lee, Characterization of the magnetic properties and transport mechanisms of \(\text{Co}_{x}\text{Fe}_{3-x}\text{O}_{4}\) spinel. Solid State Commun. 96(7), 445–449 (1995)CrossRefGoogle Scholar
  5. 5.
    M. Grigorova, H.J. Blythe, V. Blaskov, V. Rusanov, V. Petkov, V. Masheva, D. Nihtianova, LlM Martinez, J.S. Muñoz, M. Mikhov, Magnetic properties and mössbauer spectra of nanosized \(\text{CoFe}_{2}\text{O}_{4}\) powders. J. Magn. Magn. Mater. 183(1–2), 163–172 (1998)CrossRefGoogle Scholar
  6. 6.
    A. Franco, V. Zapf, P. Egan, Magnetic properties of nanoparticles of \(\text{Co}_{x}\text{Fe}_{3-x}\text{O}_4\) (\(0.05\le x \le 1.6\)) prepared by combustion reaction. J. Appl. Phys. 101(9), 09M506 (2007)CrossRefGoogle Scholar
  7. 7.
    S.R. Ahmed, P. Kofinas, Synthesis and magnetic properties of block copolymer-\(\text{CoFe}_2\text{O}_{4}\) nanoclusters. MRS Proc. 661, KK10.10 (2000)CrossRefGoogle Scholar
  8. 8.
    S. Agrawal, A. Parveen, A. Azam, Structural, electrical, and optomagnetic tweaking of Zn doped \(\text{CoFe}_{2-x}\text{Zn}_{x}\text{O}_{4-\delta }\) nanoparticles. J. Magn. Magn. Mater. 414, 144–152 (2016)CrossRefGoogle Scholar
  9. 9.
    B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, New Jersey, 2009)Google Scholar
  10. 10.
    K.E. Sickafus, J.M. Wills, N.W. Grimes, Structure of spinel. J. Am. Ceram. Soc. 82(12), 3279–3292 (1999)CrossRefGoogle Scholar
  11. 11.
    D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, Cation distribution, structural, morphological and magnetic properties of \(\text{Co}_{1-x}\text{Zn}_{x}\text{Fe}_{2}\text{O}_{4}\) (\(x=0-1\)) nanoparticles. RSC Adv. 5(3), 2338–2345 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Baykal, N. Kasapolu, Y. Koseolu, M.S. Toprak, Harun Bayrakdar, CTAB-assisted hydrothermal synthesis of \(\text{NiFe}_{2}\text{O}_{4}\) and its magnetic characterization. J. Alloys Compd. 464(1–2), 514–518 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Chikazumi, Physics of Magnetism, 2nd edn. (Oxford University Press, New York, 1997)Google Scholar
  14. 14.
    M. Yokoyama, T. Sato, E. Ohta, T. Sato, Magnetization of cadmium ferrite prepared by coprecipitation. J. Appl. Phys. 80(2), 1015–1019 (1996)CrossRefGoogle Scholar
  15. 15.
    X.-M. Liu, F. Shao-Yun, C.-J. Huang, Synthesis and magnetic characterization of novel \(\text{CoFe}_{2}\text{O}_{4}-\text{BiFeO}_{3}\) nanocomposites. Mater. Sci. Eng. B 121(3), 255–260 (2005)CrossRefGoogle Scholar
  16. 16.
    A. Hutlova, D. Niznansky, J.-L. Rehspringer, C. Estournès, M. Kurmoo, High coercive field for nanoparticles of \(\text{CoFe}_{2}\text{O}_{4}\) in amorphous silica sol-gel. Adv. Mater. 15(19), 1622–1625 (2003)CrossRefGoogle Scholar
  17. 17.
    N. Moumen, M.P. Pileni, New syntheses of cobalt ferrite particles in the range 2–5 nm: comparison of the magnetic properties of the nanosized particles in dispersed fluid or in powder form. Chem. Mater. 8(5), 1128–1134 (1996)CrossRefGoogle Scholar
  18. 18.
    K.V.P.M. Shafi, A. Gedanken, R. Prozorov, J. Balogh, Sonochemical preparation and size-dependent properties of nanostructured \(\text{CoFe}_{2}\text{O}_{4}\) particles. Chem. Mater. 10(11), 3445–3450 (1998)CrossRefGoogle Scholar
  19. 19.
    L. Zhen, K. He, C.Y. Xu, W.Z. Shao, Synthesis and characterization of single-crystalline \(\text{MnFe}_{2}\text{O}_{4}\) nanorods via a surfactant-free hydrothermal route. J. Magn. Magn. Mater. 320(21), 2672–2675 (2008)CrossRefGoogle Scholar
  20. 20.
    N. Moumen, P. Veillet, M.P. Pileni, Controlled preparation of nanosize cobalt ferrite magnetic particles. J. Magn. Magn. Mater. 149(1–2), 67–71 (1995)CrossRefGoogle Scholar
  21. 21.
    V. Pillai, D.O. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163(1–2), 243–248 (1996)CrossRefGoogle Scholar
  22. 22.
    C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J. Am. Chem. Soc. 122(26), 6263–6267 (2000)CrossRefGoogle Scholar
  23. 23.
    T. Pannaparayil, S. Komarneni, Synthesis and characterization of ultrafine cobalt ferrites. IEEE Trans. Magn. 25(5), 4233–4235 (1989)CrossRefGoogle Scholar
  24. 24.
    A. Franco, F.C. e Silva, High temperature magnetic properties of cobalt ferrite nanoparticles. Appl. Phys. Lett. 96(17), 172505 (2010)CrossRefGoogle Scholar
  25. 25.
    A. Franco, T.E.P. Alves, E.C.O. Lima, E.S. Nunes, V. Zapf, Enhanced magnetization of nanoparticles of \(\text{Mg}_{x}\text{Fe}_{3-x}\text{O}_{4}\) (\(0.5 \le x \le 1.5\)) synthesized by combustion reaction. Appl. Phys. A 94(1), 131–137 (2008)CrossRefGoogle Scholar
  26. 26.
    A. Franco, F.C. e Silva, V.S. Zapf, High temperature magnetic properties of \(\text{Co}_{1-x}\text{Mg}_{x}\text{Fe}_{2}\text{O}_{4}\) nanoparticles prepared by forced hydrolysis method. J. Appl. Phys. 111(7), 07B530 (2012)CrossRefGoogle Scholar
  27. 27.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, \(\text{ZnFe}_{2-x}\text{La}_{x}\text{O}_{4}\) nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26(12), 9776–9781 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27(11), 11691–11697 (2016)CrossRefGoogle Scholar
  29. 29.
    Y. Xie, Y. Qian, W. Wang, S. Zhang, Y. Zhang, A benzene-thermal synthetic route to nanocrystalline GaN. Science 272(5270), 1926–1927 (1996)CrossRefGoogle Scholar
  30. 30.
    S. Phumying, S. Labuayai, E. Swatsitang, V. Amornkitbamrung, Santi Maensiri, Nanocrystalline spinel ferrite (\(\text{MFe}_{2}\text{O}_{4}\), M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route. Mater. Res. Bull. 48(6), 2060–2065 (2013)CrossRefGoogle Scholar
  31. 31.
    Y. Cheng, Y. Zheng, Y. Wang, F. Bao, Yong Qin, Synthesis and magnetic properties of nickel ferrite nano-octahedra. J. Solid State Chem. 178(7), 2394–2397 (2005)CrossRefGoogle Scholar
  32. 32.
    G. Demazeau, Solvothermal processes: a route to the stabilization of new materials. J. Mater. Chem. 9(1), 15–18 (1999)CrossRefGoogle Scholar
  33. 33.
    K. Sue, K. Kimura, K. Arai, Hydrothermal synthesis of ZnO nanocrystals using microreactor. Mater. Lett. 58(25), 3229–3231 (2004)CrossRefGoogle Scholar
  34. 34.
    H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22(1), 151–152 (1967)CrossRefGoogle Scholar
  35. 35.
    A. Tavakoli, M. Sohrabi, A. Kargari, A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem. Papers 61(3), 151–170 (2007)CrossRefGoogle Scholar
  36. 36.
    K. Sue, M. Suzuki, K. Arai, T. Ohashi, Haruo Ura, Keitaro Matsui, Yukiya Hakuta, Hiromichi Hayashi, Masaru Watanabe, Toshihiko Hiaki, Size-controlled synthesis of metal oxide nanoparticles with a flow-through supercritical water method. Green Chem. 8(7), 634 (2006)CrossRefGoogle Scholar
  37. 37.
    C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005)CrossRefGoogle Scholar
  38. 38.
    R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99(6), 1727–1735 (1955)CrossRefGoogle Scholar
  39. 39.
    P. Kubelka, F. Munk, An article on optics of paint layers. Z. Tech. Phys. 12, 593–601 (1931)Google Scholar
  40. 40.
    L.E. Brus, Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80(9), 4403–4409 (1984)CrossRefGoogle Scholar
  41. 41.
    A.V. Ravindra, P. Padhan, W. Prellier, Electronic structure and optical band gap of CoFe2O4 thin films. Appl. Phys. Lett. 101(16), 161902 (2012)CrossRefGoogle Scholar
  42. 42.
    B.S. Holinsworth, D. Mazumdar, H. Sims, Q.-C. Sun, M.K. Yurtisigi, S.K. Sarker, A. Gupta, W.H. Butler, J.L. Musfeldt, Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 vs NiFe2O4. Appl. Phys. Lett. 103(8), 082406 (2013)CrossRefGoogle Scholar
  43. 43.
    Y. Yafet, C. Kittel, Antiferromagnetic arrangements in ferrites. Phys. Rev. 87(2), 290 (1952)CrossRefGoogle Scholar
  44. 44.
    B.H. Liu, J. Ding, Z.L. Dong, C.B. Boothroyd, J.H. Yin, J.B. Yi, Microstructural evolution and its influence on the magnetic properties of \(\text{CoFe}_{2}\text{O}_{4}\) powders during mechanical milling. Phys. Rev. B 74(18), 184427 (2006)CrossRefGoogle Scholar
  45. 45.
    L. Kumar, P. Egan, M. Kar, Effect of non-magnetic substitution on the structural and magnetic properties of spinel cobalt ferrite (\(\text{CoFe}_{2-x}\text{Al}_{x}\text{O}_{4}\)) ceramics. J. Mater. Sci. Mater. Electron. 24(8), 2706–2715 (2013)CrossRefGoogle Scholar
  46. 46.
    L. Avazpour, H. Shokrollahi, M.R. Toroghinejad, M.A. Zandi Khajeh, Effect of rare earth substitution on magnetic and structural properties of \(\text{Co}_1- x \text{RE}_{x}\text{Fe}_{2}\text{O}_{4}\) (RE: Nd, Eu) nanoparticles prepared via edta/eg assisted sol-gel synthesis. J. Alloys Compd. 662, 441–447 (2016)CrossRefGoogle Scholar
  47. 47.
    S. Chakraverty, M. Bandyopadhyay, Coercivity of magnetic nanoparticles: a stochastic model. J. Phys. Condens. Matter 19(21), 216201 (2007)CrossRefGoogle Scholar
  48. 48.
    A. Franco, V. Zapf, Temperature dependence of magnetic anisotropy in nanoparticles of \(\text{Co}_{x}\text{Fe}_{3-x}\text{O}_{4}\). J. Magn. Magn. Mater. 320(5), 709–713 (2008)CrossRefGoogle Scholar
  49. 49.
    P. Gaunt, Magnetic viscosity and thermal activation energy. J. Appl. Phys. 59(12), 4129–4132 (1986)CrossRefGoogle Scholar
  50. 50.
    J.F. Liu, H.L. Luo, On the coercive force and effective activation volume in magnetic materials. J. Magn. Magn. Mater. 94(1–2), 43–48 (1991)CrossRefGoogle Scholar
  51. 51.
    P. Gaunt, C.K. Mylvaganam, Domain-wall pinning and nucleation in \(\text{SmCo}_{5}\) sintered magnet alloys. Philos. Mag. B 44(5), 569–580 (1981)CrossRefGoogle Scholar
  52. 52.
    U.S. Ram, D. Ng, P. Gaunt, Magnetic viscosity and domain wall pinning in an MnAlC permanent magnet. J. Magn. Magn. Mater. 50(2), 193–198 (1985)CrossRefGoogle Scholar
  53. 53.
    H.W. Zhang, C.B. Rong, J. Zhang, S.Y. Zhang, Bao gen Shen, Coercivity of isotropic nanocrystalline \(\text{Pr}_{12}\text{Fe}_{82}\text{B}_{6}\) ribbons. Phys. Rev. B 66(18), 184436 (2002)CrossRefGoogle Scholar
  54. 54.
    H. Kronmuller, Theory of nucleation fields in inhomogeneous ferromagnets. Phys. Status Solidi (b) 144(1), 385–396 (1987)CrossRefGoogle Scholar
  55. 55.
    D. Givord, Q. Lu, M.F. Rossignol, Coercivity in Hard Magnetic Materials, in Science and Technology of Nanostructured Magnetic Materials. NATO ASI Series (Series B: Physics), vol 259, ed. by G.C. Hadjipanayis, G.A. Prinz (Springer, Boston, 1991), pp. 635–656CrossRefGoogle Scholar
  56. 56.
    X.C. Kou, H. Kronmuller, D. Givord, M.F. Rossignol, Coercivity mechanism of sintered \(\text{Pr}_{17}\text{Fe}_{75}\text{B}_{8}\) and \(\text{Pr}_{17}\text{Fe}_{53}\text{B}_{30}\) permanent magnets. Phys. Rev. B 50(6), 3849–3860 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Física, Universidade Federal de GoiásGoiânia-GOBrazil
  2. 2.Instituto de Química, Universidade Federal de GoiasGoianiaBrazil
  3. 3.Department of PhysicsGandhi Institute of Technology and Management (GITAM) UniversityBengaluruIndia

Personalised recommendations