Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14643–14650 | Cite as

Influence of morphologies on the electromagnetic and microwave absorbing properties of nickel cobaltite

  • Hongyu Wang
  • Peipeng Jin
Article
  • 70 Downloads

Abstract

Different morphologies of nickel cobaltite (NiCo2O4) nanoparticles and nanosheets were synthesized through a simple hydrothermal method and the morphologies of NiCo2O4 can be adjusted only by changing the solvent. The electromagnetic and microwave absorbing properties of NiCo2O4 with different morphologies were studied and its electromagnetic loss mechanism was illustrated. Compared with NiCo2O4 nanoparticles, NiCo2O4 nanosheets have higher electromagnetic constant due to the larger surface, which enhanced its interfacial polarization and dielectric loss ability. For NiCo2O4 nanosheets, the minimum reflection loss value was − 11 dB with the thickness of 1.4 mm, and the reflection loss value below − 5 dB can be got with the thickness from 1.4 to 1.7 mm, the results indicated that the obtained NiCo2O4 nanosheets are a kind of potential electromagnetic wave absorbent with good absorbing properties and lightweight.

Notes

Acknowledgements

This work was financed by the Natural Science Foundation of Qinghai Province under Grant No. 2018-ZJ-923Q, the Natural Science Foundation of Shaanxi Province under Grant No. 2017JQ5098, the Qinghai Provincial Innovation Platform Program (No. 2017-ZJ-Y17).

References

  1. 1.
    H. Lv, X. Liang, Y. Cheng, H. Zhang, D. Tang, B. Zhang, G. Ji, Y. Du, Coin-like α-Fe2O3@ CoFe2O4 core–shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces 7, 4744–4750 (2015)CrossRefGoogle Scholar
  2. 2.
    T. Liu, X. Xie, Y. Pang, S. Kobayashi, Co/C nanoparticles with low graphitization degree: a high performance microwave-absorbing material. J. Mater. Chem. C 4, 1727–1735 (2016)CrossRefGoogle Scholar
  3. 3.
    J. Ma, X. Zhang, W. Liu, G. Ji, Direct synthesis of MOF-derived nanoporous CuO/carbon composites for high impedance matching and advanced microwave absorption. J. Mater. Chem. C 4, 11419–11426 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Zheng, Z. Yu, G. Ji, X. Lin, H. Lv, Y. Du, Reduction synthesis of FexOy@ SiO2 core–shell nanostructure with enhanced microwave-absorption properties. J. Alloys Compd. 602, 8–15 (2014)CrossRefGoogle Scholar
  5. 5.
    W.-L. Song, X.-T. Guan, L.-Z. Fan, Y.-B. Zhao, W.-Q. Cao, C.-Y. Wang, M.-S. Cao, Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon 100, 109–117 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Sun, X. Lv, A. Xie, W. Jiang, F. Wu, Growing 3D ZnO nano-crystals on 1D SiC nanowires: enhancement of dielectric properties and excellent electromagnetic absorption performance. J. Mater. Chem. C 4, 8897–8902 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Shen, Y. Yao, Y. Liu, J. Leng, Tunable hierarchical Fe nanowires with a facile template-free approach for enhanced microwave absorption performance. J. Mater. Chem. C 4, 7614–7621 (2016)CrossRefGoogle Scholar
  8. 8.
    D. Chuai, X. Liu, R. Yu, J. Ye, Y. Shi, Enhanced microwave absorption properties of flake-shaped FePCB metallic glass/graphene composites. Compos. A 89, 33–39 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Fu, Q. Jiao, Y. Zhao, H. Li, Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials. J. Mater. Chem. A 2, 735–744 (2014)CrossRefGoogle Scholar
  10. 10.
    L. Wang, H. Xing, S. Gao, X. Ji, Z. Shen, Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C 5, 2005–2014 (2017)CrossRefGoogle Scholar
  11. 11.
    X.-J. Zhang, G.-C. Lv, G.-S. Wang, T.-Y. Bai, J.-K. Qu, X.-F. Liu, P.-G. Yin, High-performance microwave absorption of flexible nanocomposites based on flower-like Co superstructures and polyvinylidene fluoride. RSC Adv. 5, 55468–55473 (2015)CrossRefGoogle Scholar
  12. 12.
    A.P. Singh, M. Mishra, P. Sambyal, B.K. Gupta, B.P. Singh, A. Chandra, S.K. Dhawan, Encapsulation of γ-Fe2O3 decorated reduced graphene oxide in polyaniline core-shell tubes as an exceptional tracker for electromagnetic environmental pollution. J. Mater. Chem. A 2, 3581–3593 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma, P. Xu, Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 6, 12997–13006 (2014)CrossRefGoogle Scholar
  14. 14.
    P. Liu, Y. Huang, J. Yan, Y. Yang, Y. Zhao, Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8, 5536–5546 (2016)CrossRefGoogle Scholar
  15. 15.
    C. Song, X. Yin, M. Han, X. Li, Z. Hou, L. Zhang, L. Cheng, Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116, 50–58 (2017)CrossRefGoogle Scholar
  16. 16.
    Q. Liu, X. Xu, W. Xia, R. Che, C. Chen, Q. Cao, J. He, Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale 7, 1736–1743 (2015)CrossRefGoogle Scholar
  17. 17.
    L. Jing, G. Wang, Y. Duan, Y. Jiang, Synthesis and electromagnetic characteristics of the flake-shaped barium titanate powder. J. Alloys Compd. 475, 862–868 (2009)CrossRefGoogle Scholar
  18. 18.
    H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C 3, 7677–7690 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Wei, X. Wang, B. Zhang, M. Yu, Y. Zheng, Y. Wang, J. Liu, Preparation of hierarchical core-shell C@NiCo2O4@ Fe3O4 composites for enhanced microwave absorption performance. Chem. Eng. J. 314, 477–487 (2017)CrossRefGoogle Scholar
  20. 20.
    L. Shen, Q. Che, H. Li, X. Zhang, Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv. Funct. Mater. 24, 2630–2637 (2014)CrossRefGoogle Scholar
  21. 21.
    G. Gao, H.B. Wu, X.W.D. Lou, Citrate-assisted growth of NiCo2O4 nanosheets on reduced graphene oxide for highly reversible lithium storage. Adv. Energy Mater. 4, 1400422 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Zhu, Z. Wu, M. Jing, H. Hou, Y. Yang, Y. Zhang, X. Yang, W. Song, X. Jia, X. Ji, Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J. Mater. Chem. A 3, 866–877 (2015)CrossRefGoogle Scholar
  23. 23.
    J.S. Wei, H. Ding, P. Zhang, Y.F. Song, J. Chen, Y.G. Wang, H.M. Xiong, Carbon dots/NiCo2O4 nanocomposites with various morphologies for high performance supercapacitors. Small 12, 5927–5934 (2016)CrossRefGoogle Scholar
  24. 24.
    M. Zhou, F. Lu, T. Lv, X. Yang, W. Xia, X. Shen, H. He, X. Zeng, Loss mechanism and microwave absorption properties of hierarchical NiCo2O4 nanomaterial. J. Phys. D 48, 215305 (2015)CrossRefGoogle Scholar
  25. 25.
    J. Zhan, Y. Yao, C. Zhang, C. Li, Synthesis and microwave absorbing properties of quasione-dimensional mesoporous NiCo2O4 nanostructure. J. Alloys Compd. 585, 240–244 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Wang, Y. Zhang, J. Ye, H. Wei, J. Hao, J. Mu, S. Zhao, S. Hussain, Facile synthesis of three-dimensional NiCo2O4 with different morphology for supercapacitors. RSC Adv. 6, 70077–70084 (2016)CrossRefGoogle Scholar
  27. 27.
    E. Hosono, S. Fujihara, I. Honma, H. Zhou, Fabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co3O4. J. Mater. Chem. 15, 1938–1945 (2005)CrossRefGoogle Scholar
  28. 28.
    F. Deng, L. Yu, M. Sun, T. Lin, G. Cheng, B. Lan, F. Ye, Controllable growth of hierarchical NiCo2O4 nanowires and nanosheets on carbon fiber paper and their morphology-dependent pseudocapacitive performances. Electrochim. Acta 133, 382–390 (2014)CrossRefGoogle Scholar
  29. 29.
    G. Xi, K. Xiong, Q. Zhao, R. Zhang, H. Zhang, Y. Qian, Nucleation–dissolution–recrystallization: a new growth mechanism for t-selenium nanotubes. Cryst. Growth Des. 6, 577–582 (2006)CrossRefGoogle Scholar
  30. 30.
    X.-L. Shi, M.-S. Cao, J. Yuan, X.-Y. Fang, Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 95, 163108 (2009)CrossRefGoogle Scholar
  31. 31.
    M.-S. Cao, J. Yang, W.-L. Song, D.-Q. Zhang, B. Wen, H.-B. Jin, Z.-L. Hou, J. Yuan, Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 4, 6949–6956 (2012)CrossRefGoogle Scholar
  32. 32.
    B. Zhao, J.W. Liu, X.Q. Guo, W.Y. Zhao, L.Y. Liang, C. Ma, R. Zhang, Hierarchical porous Ni@boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability. Phys. Chem. Chem. Phys. 19, 9128–9136 (2017)CrossRefGoogle Scholar
  33. 33.
    B. Zhao, X.Q. Guo, W.Y. Zhao, J.H. Deng, B.B. Fan, G. Shao, Z.Y. Bai, R. Zhang, Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 10, 331–343 (2017)CrossRefGoogle Scholar
  34. 34.
    H. Wang, D. Zhu, X. Wang, F. Luo, Influence of silicon carbide fiber (SiCf) type on the electromagnetic microwave absorbing properties of SiCf/epoxy composites. Compos. A 93, 10–17 (2017)CrossRefGoogle Scholar
  35. 35.
    B. Zhao, C. Ma, L.Y. Liang, W.H. Guo, B.B. Fan, X.Q. Guo, R. Zhang, Impedance match method to tune electromagnetic wave absorption properties of hierarchical ZnO assembled by porous nanosheets. CrystEngComm 19, 3640–3648 (2017)CrossRefGoogle Scholar
  36. 36.
    Y. Qing, D. Min, Y. Zhou, F. Luo, W. Zhou, Graphene nanosheet- and flake carbonyl iron particle-filled epoxy–silicone composites as thin–thickness and wide-bandwidth microwave absorber. Carbon 86, 98–107 (2015)CrossRefGoogle Scholar
  37. 37.
    N. Wu, H. Lv, J. Liu, Y. Liu, S. Wang, W. Liu, Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. Phys. Chem. Chem. Phys. 18, 31542–31550 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and FormingQinghai UniversityXiningPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringShaanxi University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations