Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14620–14634 | Cite as

Microstructure evolution and grain orientation in ITO targets and their effects on the film characteristics

  • Fangsheng Mei
  • Tiechui Yuan
  • Ruidi Li
  • Kai Qin
  • Jingwei Huang
Article
  • 40 Downloads

Abstract

ITO targets sintered at 1560–1600 °C were selected to deposit ITO films at 25 and 150 °C with a purpose of investigating the relationship between microstructure evolution and grain orientation in ITO targets and the film characteristics. It is found that, with increasing the sintering temperature, the triangle grains of In4Sn3O12 (secondary phase) transform into the dendritic grains of In2SnO5 (secondary phase), following by the increase of the solid solubility of tin oxide in In2O3 phase (main phase). Besides, the sintering temperature has a great influence only on the texture of secondary phase. More solid solubility of tin oxide in In2O3 phase, stronger texture intensity of secondary phase and higher sputtering temperature were found to promote the crystallinity of ITO films resulting in the lower sheet resistance and obtain the films with lower compression stress and strong adhesion. The transmittance of ITO films deposited at 25 °C is closely related to the film surface roughness, while it is mainly associated with the crystal structure for ITO films deposited at 150 °C.

Notes

Acknowledgements

This study was supported by Zhuzhou Smelter Group Co., LTD., Hunan, China.

References

  1. 1.
    Y. Yang, Q. Huang, A.W. Metz et al., High-performance organic light-emitting diodes using ITO anodes grown on plastic by room-temperature ion-assisted deposition. Adv. Mater. 16, 321–324 (2004)CrossRefGoogle Scholar
  2. 2.
    M. Herrera, A. Cremades, D. Maestre et al., Growth and characterization of Mn-doped In2O3 nanowires and terraced microstructures. Acta. Mater. 75, 51–59 (2014)CrossRefGoogle Scholar
  3. 3.
    F. Mei, K. Qin, T. Yuan et al., Effects of oxygen flow velocity on the sintering properties of ITO targets. J. Mater. Sci.: Mater. Electron. 28, 14711–14719 (2017)Google Scholar
  4. 4.
    M.H. Ahn, E. Cho, S.J. Kwon, Effect of the duty ratio on the indium tin oxide (ITO) film deposited by in-line pulsed DC magnetron sputtering method for resistive touch panel. Appl. Surf. Sci. 258, 1242–1248 (2011)CrossRefGoogle Scholar
  5. 5.
    R.H. Horng, C.C. Yang, J.Y. Wu et al., GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography. Appl. Phys. Lett. 86 221101(1)–221101(3) (2005)CrossRefGoogle Scholar
  6. 6.
    S. Besbes, H.B. Ouada, J. Davenas et al., Effect of surface treatment and functionalization on the ITO properties for OLEDs. Mater. Sci. Eng. C 26, 505–510 (2006)CrossRefGoogle Scholar
  7. 7.
    M. Muraoka, M. Suzuki, Y. Sawada, Sintering of tin-doped indium oxide (Indium-Tin-oxide, ITO) with Bi2O3 additive. J. Mater. Sci. 33, 5621–5624 (1998)CrossRefGoogle Scholar
  8. 8.
    K. Utsumi, O. Matsunaga, T. Takahata, Low resistivity ITO film prepared using the ultra high density ITO target. Thin Solid Films 334, 30–34 (1998)CrossRefGoogle Scholar
  9. 9.
    T.O.L. Sunde, M.A. Einarsrud, T. Grande, Solid state sintering of nano-crystalline indium tin oxide. J. Eur. Ceram. Soc. 33, 565–574 (2013)CrossRefGoogle Scholar
  10. 10.
    B.C. Kim, J.H. Lee, J.J. Kim et al., Densification of nanocrystalline ITO powders in fast firing: effect of specimen mass and sintering atmosphere. Mater. Res. Bull. 40, 395–404 (2005)CrossRefGoogle Scholar
  11. 11.
    W.J. Heward, D.J. Swenson, Phase equilibria in the pseudo-binary In2O3-SnO2 system. J. Mater. Sci. 42, 7135–7140 (2007)CrossRefGoogle Scholar
  12. 12.
    G.B. Gonzalez, T.O. Mason, J.S. Okasinski et al., Determination of the solubility of tin in indium oxide using in situ and ex situ X-ray diffraction. J. Am. Ceram. Soc. 95, 809–815 (2012)CrossRefGoogle Scholar
  13. 13.
    K. Nakashima, Y. Kumahara, Effect of tin oxide dispersion on nodule formation in ITO sputtering. Vacuum 66, 221–226 (2002)CrossRefGoogle Scholar
  14. 14.
    S.M. Kim, J.H. Lee, J.J. Kim, Reaction-sintering behavior of nanocrystalline indium tin oxide with varying SnO2 content and particle size. Scr. Mater. 56, 293–296 (2007)CrossRefGoogle Scholar
  15. 15.
    G. Zhu, Z. Yang, L. Zhi et al., Preparation and sintering behavior of the Tin-doped Indium oxide nanopowders. J. Am. Ceram. Soc. 93, 2511–2514 (2010)CrossRefGoogle Scholar
  16. 16.
    J. Xu, Z. Yang, X. Zhang et al., Grain size control in ITO targets and its effect on electrical and optical properties of deposited ITO films. J. Mater. Sci.: Mater. Electron. 25, 710–716 (2014)Google Scholar
  17. 17.
    J.W. Xu, L. Yang, H. Wang et al., Sintering behavior and refining grains of high density tin doped indium oxide targets with low tin oxide content. J. Mater. Sci.: Mater. Electron. 27, 3298–3304 (2016)Google Scholar
  18. 18.
    J.H. Lee, Effects of substrate temperature on electrical and optical properties ITO films deposited by r.f. magnetron sputtering. J. Electroceram. 23, 554–558 (2009)CrossRefGoogle Scholar
  19. 19.
    W.F. Wu, B.S. Chiou, S.T. Hsieh, Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films. Semicond. Sci. Technol. 9, 1242–1249 (1994)CrossRefGoogle Scholar
  20. 20.
    Y.S. Kim, Y.C. Park, S.G. Ansari et al., Influence of O2 admixture and sputtering pressure on the properties of ITO thin films deposited on PET substrate using RF reactive magnetron sputtering. Surf. Coat. Technol. 173, 299–308 (2003)CrossRefGoogle Scholar
  21. 21.
    J.H. Kim, J.H. Lee, Y.W. Heo et al., Effects of oxygen partial pressure on the preferential orientation and surface morphology of ITO films grown by RF magnetron sputtering. J. Electroceram. 23, 169–174 (2009)CrossRefGoogle Scholar
  22. 22.
    L. Kerkache, A. Layadi, E. Dogheche et al., Structural, ferroelectric and dielectric properties of In2O3: Sn (ITO) on PbZr0.53Ti0.47O3 (PZT)/Pt and annealing effect. J. Alloys Compd. 509, 6072–6076 (2011)CrossRefGoogle Scholar
  23. 23.
    M. Usman, M. Naeem, N. Hassan et al., Structural, optical, and electrical characteristics of AlN:Ho thin films irradiated with 700 keV protons. Appl. Surf. Sci. 357, 179–183 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Majid, G. Husnain, M. Usman et al., Structural modifications of AlInN/GaN thin films by neon ion implantation. Phys. Lett. A 377, 2986–2989 (2013)CrossRefGoogle Scholar
  25. 25.
    B. Schattat, W. Bolse, Fast heavy ion induced interface mixing in thin-film systems. Nucl. Instrum. Methods Phys. Res. B 225, 105–110 (2004)CrossRefGoogle Scholar
  26. 26.
    M. Usman, S. Khan, M. Khan et al., Re-crystallization of ITO films after carbon irradiation. Appl. Surf. Sci. 392, 863–866 (2017)CrossRefGoogle Scholar
  27. 27.
    F. Mei, T. Yuan, R. Li, Effects of second-phase particles and elemental distributions of ITO targets on the properties of deposited ITO films. Ceram. Int. 43, 8866–8872 (2017)CrossRefGoogle Scholar
  28. 28.
    F. Mei, T. Yuan, R. Li et al., Effects of element chemical states and grain orientation growth of ITO targets on photoelectric properties of the film. Ceram. Int. 43, 14732–14741 (2017)CrossRefGoogle Scholar
  29. 29.
    F. Mei, T. Yuan, R. Li et al., Microstructure of ITO ceramics sintered at different temperatures and its effect on the properties of deposited ITO films. J. Eur. Ceram. Soc. 38, 521–533 (2018)CrossRefGoogle Scholar
  30. 30.
    P.V. Patil, R.K. Puri, V. Puri, Comparison of adhesion and intrinsic stress of chopped and non-chopped ZnS thin films. Mater. Chem. Phys. 49, 156–159 (1997)CrossRefGoogle Scholar
  31. 31.
    G.B. Gonzalez, J.S. Okasinski, T.O. Mason et al., In situ studies on the kinetics of formation and crystal structure of In4Sn3O12 using high-energy X-ray diffraction. J. Appl. Phys. 104, 043520(1)–043520(8) (2008)CrossRefGoogle Scholar
  32. 32.
    S.M. Kim, K.H. Seo, J.H. Lee et al., Preparation and sintering of nanocrystalline ITO powders with different SnO2 content. J. Eur. Ceram. Soc. 26, 73–80 (2006)CrossRefGoogle Scholar
  33. 33.
    N. Nadaud, N. Lequeux, M. Nanot, Structural studies of Tin-doped Indium Oxide (ITO) and In4Sn3O12. J. Solid State Chem. 135, 140–148 (1998)CrossRefGoogle Scholar
  34. 34.
    U.F. Kocks, C.N. Tome, H.R. Wenk, Texture and Anisotropy. Preferred Orientations in Polycrystals and Their Effect on Material Properties (Cambridge University Press, Cambridge, 1998)Google Scholar
  35. 35.
    U. Betz, M. Kharrazi Olsson, J. Marthy, M.F. Escolá, F. Atamny, Thin films engineering of indium tin oxide: large area flat panel displays application. Surf. Coat. Technol. 200, 5751–5759 (2006)CrossRefGoogle Scholar
  36. 36.
    E. Medvedovski, N. Alvarez, O. Yankov, M.K. Olsson, Advanced indium-tin oxide ceramics for sputtering targets. Ceram. Int. 34, 1173–1182 (2008)CrossRefGoogle Scholar
  37. 37.
    S. Takayama, T. Sugawara, A. Tanaka, T. Himuro, Indium tin oxide films with low resistivity and low internal stress. J. Vac. Sci. Technol. A 21, 1351–1354 (2003)CrossRefGoogle Scholar
  38. 38.
    J. Xu, Z. Yang, H. Wang et al., Effect of growth temperature and coating cycles on structural, electrical, optical properties and stability of ITO films deposited by magnetron sputtering. Mater. Sci. Semicond. Process. 21, 104–110 (2014)CrossRefGoogle Scholar
  39. 39.
    S.H. Tamboli, V. Puri, R.K. Puri, Improvement in adhesion and decrease in stress of MgO thin films due to vapour chopping. J. Alloys Compd. 503, 224–227 (2010)CrossRefGoogle Scholar
  40. 40.
    E. Medvedovski, N.A. Alvarez, C.J. Szepesi, O. Yankov, P. Lippens, Advanced indium tin oxide ceramic sputtering targets (rotary and planar) for transparent conductive nanosized films. Adv. Appl. Ceram. 112, 243–256 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Science and Technology on High Strength Structural Materials LaboratoryCentral South UniversityChangshaPeople’s Republic of China
  2. 2.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations