Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14605–14611 | Cite as

Comparison between Nb2O5 and CaCO3 additions on the DC-bias-superposition characteristic of low-temperature-fired NiCuZn ferrites

  • Anpeng Wang
  • Hua Su
  • Xiaoli Tang
  • Yuanxun Li
  • Zhiqiang Xu
  • Yulan Jing
Article

Abstract

The DC-bias-superposition characteristic of NiCuZn ferrites is essential for power multilayer chip inductors (MLCIs). In this study, different amounts of Nb2O5 and CaCO3 were added to low-temperature-fired NiCuZn ferrites to improve the DC-bias-superposition characteristic of these ferrites. The X-ray diffraction (XRD) patterns of Nb2O5- and CaCO3-doped ferrites exhibited single spinel phase in our testing range. Permeability and bulk density gradually decreased as Nb2O5 and CaCO3 contents increased. The higher the coercive force was, the better the DC-bias-superposition characteristic would be. We compared the Nb2O5- and CaCO3-doped ferrites when the same permeability was obtained, and we observed that the DC-bias-superposition characteristic of the Nb2O5-doped sample was better than that of the CaCO3-doped ferrite. Thus, the former was more suitable than the latter for power MLCI applications.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos 51472042, 61771104 and 61471096. Special Projects on Science and Technology of Guizhou Province [2016]3011. Science and technology support program of Sichuan Province and Dongguan entrepreneurial talent program.

References

  1. 1.
    L. Wang, Z. Hu, Y. Qiu, H. Wang, Y.-F. Liu, A new model for designing multi-hole multi-permeability nonlinear LTCC inductors. Twenty-Ninth Annual IEEE Applied Power Electronics Conference and Exposition, (2014), pp. 757–762Google Scholar
  2. 2.
    H. Zhu, W. Shen, H. Zhu, Y. Jin, H. Zhou, Influence of B2O3–MoO3 addition on microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites. Ceram. Int. 40, 10985–10989 (2014)CrossRefGoogle Scholar
  3. 3.
    W. Shen, H. Zhu, Y. Jin, H. Zhou, Z. Xu, Sintering, microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites doped with B2O3. Ceram. Int. 40, 9205–9209 (2014)CrossRefGoogle Scholar
  4. 4.
    H.I. Hsiang, J.L. Wu, Cooling rate effects on the microstructure, magnetic properties, and DC superposition behavior of NiCuZn ferrites. Int. J. Appl. Ceram. Technol. 12, 1065–1070 (2015)CrossRefGoogle Scholar
  5. 5.
    H.-I. Hsiang, J.-L. Wu, Copper-rich phase segregation effects on the magnetic properties and DC-bias-superposition characteristic of NiCuZn ferrites. J. Magn. Magn. Mater. 374, 367–371 (2015)CrossRefGoogle Scholar
  6. 6.
    H.-I. Hsiang, W.-C. Kuo, C.-S. Hsi, Sintering and cooling atmosphere effects on the microstructure, magnetic properties and DC superposition behavior of NiCuZn ferrites. J. Eur. Ceram. Soc. 37, 2123–2128 (2017)CrossRefGoogle Scholar
  7. 7.
    K. Sun, Z. Lan, Z. Yu, X. Jiang, J. Huang, Phase formation, grain growth and magnetic properties of NiCuZn ferrites. J. Magn. Magn. Mater. 323, 927–932 (2011)CrossRefGoogle Scholar
  8. 8.
    X.-L. Tang, H. Su, H.-W. Zhang, Tailoring the microstructure of NiZn ferrite for power field applications. Chin. Phys. Lett. 29, 087501.1–087501.3 (2012)Google Scholar
  9. 9.
    M.S.R. Prasad, B.B.V.S.V. Prasad, B. Rajesh Babu, Magnetic, structural and dc electrical resistivity studies on the divalent cobalt substituted Ni–Zn ferrite system. Int. J. Mod. Phys. B 29, 1550067.1–1550067.20(2015)CrossRefGoogle Scholar
  10. 10.
    S.-F. Wang, H.-C. Yang, Y.-F. Hsu, C.-K. Hsieh, Effects of SnO2, WO3, and ZrO2 addition on the magnetic and mechanical properties of NiCuZn ferrites. J. Magn. Magn. Mater. 374, 381–387 (2015)CrossRefGoogle Scholar
  11. 11.
    L. Huan, X. Tang, H. Su, H. Zhang, Y. Jing, B. Liu, Effects of SnO2 on DC-bias-superposition characteristic of the low-temperature-fired NiCuZn ferrites. IEEE Trans. Magn. 50, 2006104.1–2016104.4 (2014)CrossRefGoogle Scholar
  12. 12.
    L. Huan, X. Tang, H. Su, H. Zhang, Y. Jing, Effects of SiO2 concentration on the DC-bias-superposition characteristics of the NiCuZn ferrites. J. Mater. Sci.: Mater. Electron. 26, 3275–3281 (2015)Google Scholar
  13. 13.
    L.-T.M. Hsiang, Hsing-I. Hsiang, W.-H. Hsu, Varistor and magnetic properties of nickel copper zinc niobium ferrite doped with Bi2O3. J. Am. Ceram. Soc. 97, 3918–3925 (2014)CrossRefGoogle Scholar
  14. 14.
    H. Su, X. Tang, H. Zhang, Y. Jing, F. Bai, Low loss magneto-dielectric materials: approaches and developments. J. Electron. Mater. 43, 299–307 (2014)CrossRefGoogle Scholar
  15. 15.
    Y. Gao, H. Zhang, L. Jin et al., Improving the magnetic properties of Li-Zn-Ti ferrite by doping with H3BO3-Bi2O3-SiO2-ZnO glass for LTCC technology. J. Electron. Mater. 43, 3653–3658 (2014)CrossRefGoogle Scholar
  16. 16.
    C. Ouyang, S. Xiao, J. Zhu, W. Shi, Microwave sintering versus conventional sintering of NiCuZn ferrites. Part II: microstructure and DC-bias superposition characteristics. J. Magn. Magn. Mater. 407, 182–187 (2016)CrossRefGoogle Scholar
  17. 17.
    H.-I. Hsiang, J.-F. Chueh, Bi2O3 addition effects on the sintering mechanism, magnetic properties, and DC superposition behavior of NiCuZn ferrites. Int. J. Appl. Ceram. Technol. 12, 1008–1015 (2015)CrossRefGoogle Scholar
  18. 18.
    H. Su, C. Zhao, H. Guo, Q. Wang, C. Dai, H. Zhang, Y. Li, X. Tang, Correlation between the microstructure and permeability stability of ferrite materials. Ceram. Int. 44, 2304–2310 (2018)CrossRefGoogle Scholar
  19. 19.
    K. Sun, Z. Lan, Z. Yu, L. Li, J. Huang, Grain growth and magnetic properties of Nb2O5-doped NiZn ferrites. Jpn. J. Appl. Phys. 47, 7871–7875 (2008)CrossRefGoogle Scholar
  20. 20.
    S.-F. Wang, Y.-F. Hsu, Y.-X. Liu, C.-K. Hsieh, Effects of microstructure and CaO addition on the magnetic and mechanical properties of NiCuZn ferrites. J. Magn. Magn. Mater. 394, 470–476 (2015)CrossRefGoogle Scholar
  21. 21.
    H. Su, X. Tang, H. Zhang, Y. Jing, Z. Zhong, Effects of Nb2O5 on DC-bias-superposition characteristic of the low-temperature-fired NiCuZn ferrites. IEEE Trans. Magn. 49, 4222–4225 (2013)CrossRefGoogle Scholar
  22. 22.
    A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, N. Sarami, Influence of CaO and SiO2 co-doping on the magnetic, electrical properties and microstructure of a Ni–Zn ferrite. J. Phys. D: Appl. Phys. 48, 145001.1–145001.9 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Zhu, C. Ouyang, S. Xiao, Y. Gao, Microwave sintering versus conventional sintering of NiCuZn ferrites. Part I: densification evolution. J. Magn. Magn. Mater. 407, 308–313 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Yan, L. Dong, Z. Chen, X. Wang, Z. Feng, The effect of the microstructure on the DC-bias superposition characteristic of NiCuZn ferrite. J. Magn. Magn. Mater. 353, 47–50 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Dongguan Chengqi Cichuang Innovation Materials Co., Ltd.DongguanChina

Personalised recommendations