Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14596–14604 | Cite as

A high-performance supercapacitor based on N-doped TiO2 nanoparticles

  • Amin Hodaei
  • Amin Shiralizadeh Dezfuli
  • Hamid Reza NaderiEmail author


Titanium dioxide (TiO2) is one of the most commercialized metal oxides due to its abundance, low cost, and environmental friendliness. However, its potential for application in electrochemical energy storage devices especially as an electrode material for supercapacitors is limited. In this study, Nitrogen-doped TiO2 (N-doped TiO2) nanoparticles are synthesized through a sol–gel method and their supercapacitive performance is compared with that of TiO2 nanoparticles. X-ray photoelectron spectroscopy (XPS) analysis of N-doped TiO2 proves successful doping of nitrogen into the crystal lattice of the TiO2 nanoparticles with a concentration of 4.1 atom%. Electrochemical properties of the synthesized materials are investigated with a three-electrode system in 3.0 M KCl as the aqueous electrolyte. Electrochemical characterizations proved that nitrogen doping of TiO2 nanoparticles provided an enhanced supercapacitive performance including, specific capacitance of 311 F g−1 at 1 A g−1, 98.9% capacitance retention after 4000 cycles, and a better rate capability than that of bare TiO2 nanoparticles. Results of this study clearly demonstrate that small amount of nitrogen doping into the crystal lattice of TiO2 nanoparticles significantly improves their supercapacitive performance.


  1. 1.
    T.-Y. Wei, C.-H. Chen, H.-C. Chien, S.-Y. Lu, C.-C. Hu, A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv. Mater. 22(3), 347–351 (2010)CrossRefGoogle Scholar
  2. 2.
    Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8(3), 702–730 (2015)CrossRefGoogle Scholar
  3. 3.
    E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6), 937–950 (2001)CrossRefGoogle Scholar
  4. 4.
    Q. Lu, J.G. Chen, J.Q. Xiao, Nanostructured electrodes for high-performance pseudocapacitors. Angew. Chem. Int. Ed. 52(7), 1882–1889 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Sobaszek, K. Siuzdak, M. Sawczak, J. Ryl, R. Bogdanowicz, Fabrication and characterization of composite TiO2 nanotubes/boron-doped diamond electrodes towards enhanced supercapacitors. Thin Solid Films, 601(Supplement C), 35–40 (2016)Google Scholar
  6. 6.
    N. Nagarajan, H. Humadi, I. Zhitomirsky, Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochim. Acta 51(15), 3039–3045 (2006)CrossRefGoogle Scholar
  7. 7.
    S.-Y. Wang, K.-C. Ho, S.-L. Kuo, N.-L. Wu, Investigation on capacitance mechanisms of Fe3O4 electrochemical capacitors. J. Electrochem. Soc. 153(1), A75–A80 (2006)CrossRefGoogle Scholar
  8. 8.
    C. Lokhande, T. Gujar, V. Shinde, R.S. Mane, S.-H. Han, Electrochemical supercapacitor application of pervoskite thin films. Electrochem. Commun. 9(7), 1805–1809 (2007)CrossRefGoogle Scholar
  9. 9.
    R. Wang, Q. Li, L. Cheng, H. Li, B. Wang, X. Zhao, P. Guo, Electrochemical properties of manganese ferrite-based supercapacitors in aqueous electrolyte: the effect of ionic radius. Colloids Surf. A 457, 94–99 (2014)CrossRefGoogle Scholar
  10. 10.
    A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, P. Norouzi, A high performance supercapacitor based on a ceria/graphene nanocomposite synthesized by a facile sonochemical method. RSC Adv. 5(57), 46050–46058 (2015)CrossRefGoogle Scholar
  11. 11.
    A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, Anchoring samarium oxide nanoparticles on reduced graphene oxide for high-performance supercapacitor. Appl. Surf. Sci. 402, 245–253 (2017)CrossRefGoogle Scholar
  12. 12.
    H.R. Naderi, M.R. Ganjali, A.S. Dezfuli, High-performance supercapacitor based on reduced graphene oxide decorated with europium oxide nanoparticles. J. Mater. Sci.: Mater. Electron. 29(4), 3035–3044 (2017)Google Scholar
  13. 13.
    H.R. Naderi, M.R. Ganjali, A.S. Dezfuli, P. Norouzi, Sonochemical preparation of a ytterbium oxide/reduced graphene oxide nanocomposite for supercapacitors with enhanced capacitive performance. RSC Adv. 6(56), 51211–51220 (2016)CrossRefGoogle Scholar
  14. 14.
    J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W.D. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166–5180 (2012)CrossRefGoogle Scholar
  15. 15.
    X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong, Y. Li, H-TiO2@ MnO2//H-TiO2@ C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 25(2), 267–272 (2013)CrossRefGoogle Scholar
  16. 16.
    L.-F. Chen, Z.-H. Huang, H.-W. Liang, Q.-F. Guan, S.-H. Yu, Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv. Mater. 25(34), 4746–4752 (2013)CrossRefGoogle Scholar
  17. 17.
    D.A. Agyeman, K. Song, S.H. Kang, M.R. Jo, E. Cho, Y.-M. Kang, An improved catalytic effect of nitrogen-doped TiO2 nanofibers for rechargeable Li–O2 batteries; the role of oxidation states and vacancies on the surface. J. Mater. Chem. A 3(45), 22557–22563 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Yang, Y. Lin, X. Song, P. Zhang, L. Gao, Covalently coupled ultrafine H-TiO2 nanocrystals/nitrogen-doped graphene hybrid materials for high-performance supercapacitor. ACS Appl. Mater. Interfaces. 7(32), 17884–17892 (2015)CrossRefGoogle Scholar
  19. 19.
    X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12(3), 1690–1696 (2012)CrossRefGoogle Scholar
  20. 20.
    F. Veisi, M.A. Zazouli, M.A. Ebrahimzadeh, J.Y. Charati, A.S. Dezfoli, Photocatalytic degradation of furfural in aqueous solution by N-doped titanium dioxide nanoparticles. Environ. Sci. Pollut. Res. 23(21), 21846–21860 (2016)CrossRefGoogle Scholar
  21. 21.
    B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, M.S. El-Aasser, XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17(9), 2664–2669 (2001)CrossRefGoogle Scholar
  22. 22.
    N.R. Khalid, E. Ahmed, Z. Hong, Y. Zhang, M. Ahmad, Nitrogen doped TiO2 nanoparticles decorated on graphene sheets for photocatalysis applications. Curr. Appl. Phys. 12(6), 1485–1492 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Mrowetz, W. Balcerski, A.J. Colussi, M.R. Hoffmann, Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. J. Phys. Chem. B 108(45), 17269–17273 (2004)CrossRefGoogle Scholar
  24. 24.
    J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J. Hazard. Mater. 168(1), 253–261 (2009)CrossRefGoogle Scholar
  25. 25.
    J. Wang, W. Zhu, Y. Zhang, S. Liu, An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing: visible-light-induced photodecomposition of methylene blue. J. Phys. Chem. C 111(2), 1010–1014 (2007)CrossRefGoogle Scholar
  26. 26.
    Y. Sheng, Y. Xu, D. Jiang, L. Liang, D. Wu, Y. Sun, Hydrothermal preparation of visible-light-driven N–Br-codoped photocatalysts. Int. J. Photoenergy 2008, 7 (2008)CrossRefGoogle Scholar
  27. 27.
    F. Pei, Y. Liu, S. Xu, J. Lü, C. Wang, S. Cao, Nanocomposite of graphene oxide with nitrogen-doped TiO2 exhibiting enhanced photocatalytic efficiency for hydrogen evolution. Int. J. Hydrog Energy 38(6), 2670–2677 (2013)CrossRefGoogle Scholar
  28. 28.
    X. Tang, Z. Wang, Y. Wang, Visible active N-doped TiO2/reduced graphene oxide for the degradation of tetracycline hydrochloride. Chem. Phys. Lett. 691, 408–414 (2018)CrossRefGoogle Scholar
  29. 29.
    Y. Wu, X. Liu, Z. Yang, L. Gu, Y. Yu, Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 12(26), 3522–3529 (2016)CrossRefGoogle Scholar
  30. 30.
    X. He, C. Yang, G. Zhang, D. Shi, Q. Huang, H. Xiao, Y. Liu, R. Xiong, Supercapacitor of TiO2 nanofibers by electrospinning and KOH treatment. Mater. Des. 106, 74–80 (2016)CrossRefGoogle Scholar
  31. 31.
    H. Kim, M.Y. Cho, M.H. Kim, K.Y. Park, H. Gwon, Y. Lee, K.C. Roh, K. Kang, A novel high-energy hybrid supercapacitor with an anatase TiO2–reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 3(11), 1500–1506 (2013)CrossRefGoogle Scholar
  32. 32.
    D. Wang, K. Xie, Y. Wang, S. Cheng, A non-aqueous hybrid supercapacitor with porous anatase TiO2 nanoparticles anode and activated carbon cathode. Int. J. Electrochem. Sci. 11(12), 9776–9782 (2016)CrossRefGoogle Scholar
  33. 33.
    V.H. Pham, T.-D. Nguyen-Phan, X. Tong, B. Rajagopalan, J.S. Chung, J.H. Dickerson, Hydrogenated TiO2@ reduced graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications. Carbon 126, 135–144 (2018)CrossRefGoogle Scholar
  34. 34.
    A. Ramadoss, S.J. Kim, Improved activity of a graphene–TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon 63, 434–445 (2013)CrossRefGoogle Scholar
  35. 35.
    L. Aravinda, K. Nagaraja, H. Nagaraja, K.U. Bhat, B.R. Bhat, Fabrication and performance evaluation of hybrid supercapacitor electrodes based on carbon nanotubes and sputtered TiO2. Nanotechnology 27(31), 314001 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amin Hodaei
    • 1
  • Amin Shiralizadeh Dezfuli
    • 2
  • Hamid Reza Naderi
    • 2
    • 3
    Email author
  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey
  2. 2.Faculty of ChemistryUniversity of TehranTehranIran
  3. 3.Novin Ebtekar Company, Exclusive Agent of Metrohm-Autolab and Dropsens CompaniesTehranIran

Personalised recommendations