Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14589–14595 | Cite as

Dielectric, ferroelectric and impedance properties of Li+-doped 0.97Na0.4K0.1Bi0.5TiO3–0.03Ba0.7Sr0.3TiO3 ceramics

  • Cheng WangEmail author
  • Xiaojie LouEmail author


A series of Li+-doped 0.97Na0.4K0.1Bi0.5TiO3–0.03Ba0.7Sr0.3TiO3 ceramics were prepared by using the conventional solid-state reaction technique. The phase structure, dielectric, ferroelectric and impedance properties were systemically studied. X-ray powder diffraction patterns reveal that all the ceramics possess a pure perovskite phase. Ferroelectric property tests clearly show the disruption of the long-range ferroelectric order as the Li+ doping content increases. Dielectric permittivity results suggest that the samples experience a transformation from ferroelectric to relaxor phase with increasing the Li+ concentration, while the diffuse factors further confirm the enhanced relaxor characteristic. Complex ac impedance data shows that charge carriers obey the long-range conductivity mechanism at low doping levels (x ≤ 0.01), while it changes to a localized mechanism at high doping levels (x ≥ 0.03). The active energy fitted by the relaxation time becomes smaller as the Li+ concentration increases, revealing the increasing concentration of oxygen vacancies. We argue that the increasing concentration of vacancies should be responsible for the enhanced relaxor characteristic by disturbing the long-range ferroelectric orders.



This work was supported by National Science Foundation of China (NSFC Nos. 51772238) and the CSS Project (Grant No. YK2015-0602006). The Research Project of GSEDU 2018 (2018B-101). Prof. X. J. Lou would like to thank the ‘‘One Thousand Youth Talents’’ program for support.


  1. 1.
    J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)CrossRefGoogle Scholar
  2. 2.
    J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559 (2015)CrossRefGoogle Scholar
  3. 3.
    P. Ren, J. He, X. Wang, M. Sun, H. Zhang, G. Zhao, Scr. Mater. 146, 110 (2018)CrossRefGoogle Scholar
  4. 4.
    J.-J. Wang, F.-F. Guo, B. Yang, S.-T. Zhang, L.-M. Zheng, F.-M. Wu, W.-W. Cao, J. Mater. Sci. Mater. Electron. 29, 2357 (2017)CrossRefGoogle Scholar
  5. 5.
    P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Adv. Mater. 30, 1705171 (2018)CrossRefGoogle Scholar
  6. 6.
    H. Liu, J. Chen, H. Huang, L. Fan, Y. Ren, Z. Pan, J. Deng, L.-Q. Chen, X. Xing, Phys. Rev. Lett. 120, 055501 (2018)CrossRefGoogle Scholar
  7. 7.
    P. Ren, Z. Liu, X. Wang, Z. Duan, Y. Wan, F. Yan, G. Zhao, J. Alloys Compd. 742, 683 (2018)CrossRefGoogle Scholar
  8. 8.
    G. Smolenskii, V. Isupov, A. Agranovskaya, J. Sov. Phys. Solid State 2, 2651 (1961)Google Scholar
  9. 9.
    S. Kim, H. Choi, S. Han, J.S. Park, M.H. Lee, T.K. Song, M.-H. Kim, D. Do, W.-J. Kim, J. Eur. Ceram. Soc. 37, 1379 (2016)CrossRefGoogle Scholar
  10. 10.
    X. Liu, X. Tan, Adv. Mater. 28, 574 (2016)CrossRefGoogle Scholar
  11. 11.
    J.-H. Cho, J.-S. Park, S.-W. Kim, Y.-H. Jeong, J.-S. Yun, W.-I. Park, Y.-W. Hong, J.-H. Paik, J. Eur. Ceram. Soc. 37, 3313 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Gao, Z. Yao, L. Ning, G. Dong, H. Fan, Q. Li, Adv. Eng. Mater. 19, 1700125 (2017)CrossRefGoogle Scholar
  13. 13.
    A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38, 5564 (1999)CrossRefGoogle Scholar
  14. 14.
    Z. Yang, B. Liu, L. Wei, Y. Hou, Mater. Res. Bull. 43, 81 (2008)CrossRefGoogle Scholar
  15. 15.
    K.-N. Pham, A. Hussain, C.W. Ahn, W. Kim, S.J. Jeong, J.-S. Lee, Mater. Lett. 64, 2219 (2010)CrossRefGoogle Scholar
  16. 16.
    S. Prasertpalichat, B. Phongthipphithak, N. Kumar, D.P. Cann, T. Bongkarn, Ceram. Int. 43, S145 (2017)CrossRefGoogle Scholar
  17. 17.
    W.-C. Lee, C.-Y. Huang, L.-K. Tsao, Y.-C. Wu, J. Alloys Compd. 492, 307 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, J. Du, G. Li, J. Eur. Ceram. Soc. 36, 4003 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Yin, X. Lv, J. Wu, Ceram. Int. 43, 13541 (2017)CrossRefGoogle Scholar
  20. 20.
    G. Viola, H. Ning, X. Wei, M. Deluca, A. Adomkevicius, J. Khaliq, M. John Reece, H. Yan, J. Appl. Phys. 114, 014107 (2013)CrossRefGoogle Scholar
  21. 21.
    Q. Li, S. Gao, L. Ning, H. Fan, Z. Liu, Z. Li, Ceram. Int. 43, 5367 (2017)CrossRefGoogle Scholar
  22. 22.
    F. Li, R. Zuo, D. Zheng, L. Li, D. Viehland, J. Am. Ceram. Soc. 98, 811 (2015)CrossRefGoogle Scholar
  23. 23.
    W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.-J. Kleebe, A.J. Bell, J.r. Rödel, J. Appl. Phys. 110, 074106 (2011)CrossRefGoogle Scholar
  24. 24.
    K. Wang, A. Hussain, W. Jo, J. Rödel, D.D. Viehland, J. Am. Ceram. Soc. 95, 2241 (2012)CrossRefGoogle Scholar
  25. 25.
    G. Dong, H. Fan, J. Shi, M. Li, W. Jo, J. Am. Ceram. Soc. 98, 1150 (2015)CrossRefGoogle Scholar
  26. 26.
    R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, C.-W. Ahn, J.U. Rahman, T.-K. Song, W.-J. Kim, M.-H. Kim, D. Damjanovic, J. Am. Ceram. Soc. 98, 3842 (2015)CrossRefGoogle Scholar
  27. 27.
    W. Jo, E. Erdem, R.-A. Eichel, J. Glaum, T. Granzow, D. Damjanovic, J. Rödel, J. Appl. Phys. 108, 014110 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Zaman, A. Hussain, R.A. Malik, A. Maqbool, S. Nahm, M.-H. Kim, J. Phys. D 49, 175301 (2016)CrossRefGoogle Scholar
  29. 29.
    V. Pal, A. Kumar, O.P. Thakur, R.K. Dwivedi, N.E. Prasad, J. Alloys Compd. 714, 725 (2017)CrossRefGoogle Scholar
  30. 30.
    C. Wang, T. Xia, X. Lou, T. Shutao, J. Mater. Sci. 52, 11337 (2017)Google Scholar
  31. 31.
    T. Li, X. Liu, S. Shi, Y. Yin, H. Li, Q. Wang, Y. Zhang, J. Bian, S.S. Rajput, C. Long, B. Peng, Y. Bai, Y. Wang, X. Lou, Appl. Phys. Lett. 111, 202902 (2017)CrossRefGoogle Scholar
  32. 32.
    X.-S. Qiao, X.-M. Chen, H.-L. Lian, W.-T. Chen, J.-P. Zhou, P. Liu, S. Zhang, J. Am. Ceram. Soc. 99, 198 (2016)CrossRefGoogle Scholar
  33. 33.
    V. Singh, A. Daryapurkar, S.S. Rajput, S. Mukherjee, A. Garg, R. Gupta, J. Am. Ceram. Soc. 100, 5226 (2017)CrossRefGoogle Scholar
  34. 34.
    N. Zhao, H. Fan, X. Ren, S. Gao, J. Ma, Y. Shi, Ceram. Int. 44, 571 (2018)CrossRefGoogle Scholar
  35. 35.
    J. Deng, L. Liu, X. Sun, S. Liu, T. Yan, L. Fang, B. Elouadi, Mater. Res. Bull. 88, 320 (2017)CrossRefGoogle Scholar
  36. 36.
    C. Long, T. Li, H. Fan, Y. Wu, L. Zhou, Y. Li, L. Xiao, Y. Li, J. Alloys Compd. 658, 839 (2016)CrossRefGoogle Scholar
  37. 37.
    Z. Liu, P. Ren, C. Long, X. Wang, Y. Wan, G. Zhao, J. Alloys Compd. 721, 538 (2017)CrossRefGoogle Scholar
  38. 38.
    P. Ren, Z. Liu, M. Wei, L. Liu, J. Shi, F. Yan, H. Fan, G. Zhao, J. Eur. Ceram. Soc. 37, 2091 (2017)CrossRefGoogle Scholar
  39. 39.
    T. Li, H. Fan, C. Long, G. Dong, S. Sun, J. Alloys Compd. 609, 60 (2014)CrossRefGoogle Scholar
  40. 40.
    R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994)CrossRefGoogle Scholar
  41. 41.
    P. Liang, X. Chao, Z. Yang, J. Appl. Phys. 116, 044101 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetaslsLanzhou University of TechnologyLanzhouChina
  2. 2.Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina
  3. 3.Gansu Construction Vocational Technical CollegeLanzhouChina
  4. 4.Xi’an Jiaotong UniversityXi’anChina

Personalised recommendations