Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14582–14588 | Cite as

Efficacious realization of Ba0.5Sr0.5TixM1−xO3 (M = Mn2+, Co2+) perovskite nanostructures through oxalate precursor strategy

  • Ali Omar Turky
  • Ahmed Esmail ShalanEmail author
  • Mohamed M. Rashad
  • Hailei Zhao
  • Mikhael Bechelany


Nowadays, barium strontium titanate (BST; Ba0.5Sr0.5TiO3) as a versatile material is a prospect candidate in different electronic and magnetic applications. In this study, cubic BST nanoparticles have been prosperity fabricated based on the oxalate precursor method. Afterwards, the formed precursor powders are further annealed at temperature 1000 °C for time 2 h. Meanwhile, the insertion of Mn2+ or Co2+ ions as an acceptor substitution to BST crystal was described at different concentrations from 0.1 to 0.3 molar ratios. Accordingly, the crystallite size and cell unit volume were found to enhance due to the introduction of acceptor ions. The Mn2+ or Co2+ ions replacements have the magnificent impact on the morphology, optical as well as dielectric and magnetic properties compared to the pure one. For instance, the optical transparency of BST material was found to increase with increasing Mn2+ or Co2+ ion content. Typically, the band gap energy and the refractive index were increased with acceptor doped ions. The dielectric performance in terms of different substitutions was decreased with Co2+ ions and increased with Mn2+ ions compared with pure BST sample. Eventually, the magnetic peculiarities were improved by addition of Mn2+ or Co2+ ions at different molar ratios.



A O Turky appreciate the fund through a fellowship granted by the French government to pursue part of the work. We also thank Central Metallurgical Research & Development Institute for the financial support.


  1. 1.
    G. Houzet, K. Blary, S. Lepilliet, D. Lippens, L. Burgnies, G. Ve´lu, J.C. Carru, E. Ngue´ma, P. Mounaix, J. Appl. Phys. 109, 014116 (2011)CrossRefGoogle Scholar
  2. 2.
    S. Nazir, U. Schwingenschlogl, Appl. Phys. Lett. 99, 073102 (2011)CrossRefGoogle Scholar
  3. 3.
    U. Ellerkmann, R. Liedtke, U. Boettger, R. Waser, Appl. Phys. Lett. 85, 4708 (2004)CrossRefGoogle Scholar
  4. 4.
    X. Hu, H. Li, Y. Liang, Y. Wei, Z. Yu, D. Marshall Jr., J. Edwards, R. Droopad, X. Zhang, A.A. Demkov, K. Moore, J. Kulik, Appl. Phys. Lett. 82, 203 (2003)CrossRefGoogle Scholar
  5. 5.
    X. Zhu, W. Peng, J. Miao, D. Zheng, Mater. Lett. 58, 2045–2048 (2004)CrossRefGoogle Scholar
  6. 6.
    A.O. Turky, M.M. Rashad, A.M. Hassan, E.M. Elnaggar, M. Bechelany, Phys. Chem. Chem. Phys. 19, 6878–6886 (2017)CrossRefGoogle Scholar
  7. 7.
    H.J. Noh, S.G. Lee, S.P. Nam, Y.H. Lee, Mater. Res. Bull. 45, 339–342 (2010)CrossRefGoogle Scholar
  8. 8.
    C. Sun Gyu, H. Tae-Jung, Y. Byoung-Gon, J. Seung Pil, O. Kwon, P. Hyung-Ho, Ceram. Int. 34, 2008, 833–836CrossRefGoogle Scholar
  9. 9.
    A.O. Turky, M.M. Rashad, A.T. Kandil, M. Bechelany, Phys. Chem. Chem. Phys. 17, 12553–12560 (2016)CrossRefGoogle Scholar
  10. 10.
    A.O. Turky, M.M. Rashad, M. Bechelany, Mater. Des. 90, 54–59 (2016)CrossRefGoogle Scholar
  11. 11.
    L.C. Costa, A. Aoujgal, M.P.F. Graca, N. Hadik, M.E. Achour, A. Tachafine, J.C. Carru, A. Oueriagli, A. Outzourit, Physica B 405, 3741–3744 (2010)CrossRefGoogle Scholar
  12. 12.
    G.Z. Zhang, S.L. Jiang, Y.K. Zeng, Y.Y. Zhang, Q.F. Zhang, Y. Yu, High, J. Am. Ceram. Soc. 92, 3132–3134 (2009)CrossRefGoogle Scholar
  13. 13.
    L. Xiaoa, K.-L. Choy, I. Harrisona, Surf. Coat. Technol. 205, 2989–2993 (2011)CrossRefGoogle Scholar
  14. 14.
    S.-Y. Chen, H.-W. Wang, L.-C. Huang, Jpn. J. Appl. Phys. 40, 4974 (2001)CrossRefGoogle Scholar
  15. 15.
    K. Hyun Yoon, J.Chan Lee, J. Park, D. Heon Kang, C. Moo Song, Y. Gyo Seo. Jpn. J. Appl. Phys. 40, 5497 (2001)CrossRefGoogle Scholar
  16. 16.
    W. Chang, J. Appl. Phys. 92, 3941 (2002)CrossRefGoogle Scholar
  17. 17.
    M. Jain, S.B. Majumder, R.S. Katiyar, Appl. Phys. Lett. 81, 3212 (2002)CrossRefGoogle Scholar
  18. 18.
    M. Yamaka, T. Kawahara, T. Makita, A. Yuuki, K. Ono, Jpn. J. Appl. Phys. 35, 729 (1996)CrossRefGoogle Scholar
  19. 19.
    Y.C. Choi, B.S. Lee, Mater. Chem. Phys. 61, 124 (1999)CrossRefGoogle Scholar
  20. 20.
    H.J. Chung, J.H. Choi, J.Y. Lee, S.I. Woo, Thin Solid Films 382, 106 (2001)CrossRefGoogle Scholar
  21. 21.
    C.S. Hwang, B.T. Lee, C.S. Kang, J.W. Kim, K.H. Lee, H.J. Cho, H. Horii, W.D. Kim, S.I. Lee, Y.B. Roh, M.Y. Lee, J. Appl. Phys. 83, 3703 (1998)CrossRefGoogle Scholar
  22. 22.
    M.M. Rashad, A.O. Turky, A.T. Kandil, J. Mater. Sci. Mater. Electron. 24, 3284–3291 (2013)CrossRefGoogle Scholar
  23. 23.
    M.M. Rashad, E.M. Elsayed, M.S. Al-Kotb, A.E. Shalan, J. Alloy. Compd. 581, 71–78 (2013)CrossRefGoogle Scholar
  24. 24.
    M. Rasly, M. Afifi, A.E. Shalan, M.M. Rashad, Appl. Phys. A 123, 331 (2017)CrossRefGoogle Scholar
  25. 25.
    M.M. Rashad, S.M. Mahmoud, Z. Abdel-Hamid, H.M. El-Sayed, A.E. Shalan, N.A. Khalifa, A.T. Kandil, Part. Sci. Technol. 36, 172–177 (2018)CrossRefGoogle Scholar
  26. 26.
    L. Xiao, K.-L. Choy, I. Harrison, Surf. Coat. Technol. 205, 2989–2993 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Liu, C. Ma, G. Collins, J. Liu, C. Chen, L. Shui, H. Wang, C. Dai, Y. Lin, J. He, J. Jiang, E.I. Meletis, Q. Zhang, Cryst. Growth Des. 10, 4221–4223 (2010)CrossRefGoogle Scholar
  28. 28.
    Z. Fu, A. Wu, P.M. Vilarinho, Chem. Mater. 18, 3343–3350 (2006)CrossRefGoogle Scholar
  29. 29.
    X. Wang, S. Lv, C. Zhang, Q. Hu, L. Li, J. Alloys Compd. 576, 262–264 (2013)CrossRefGoogle Scholar
  30. 30.
    Y. Ye, T. Guo, Ceram. Int. 35, 2761–2765 (2009)CrossRefGoogle Scholar
  31. 31.
    R.W. Schwartz, Chem. Mater. 9, 2325–2340 (1997)CrossRefGoogle Scholar
  32. 32.
    T.S. Moss, Phys. Stat. Sol. (B) 131, 415 (1985)CrossRefGoogle Scholar
  33. 33.
    P. Herve, L.K.J. Vandamme, Infrared Phys. Technol. 35, 609 (1994)CrossRefGoogle Scholar
  34. 34.
    L.S. Cavalcante, J.C. Sczancoski, F.S. De Vicente, M.T. Frabbro, M.S. Li, J.A. Varela, E. Longo, J. Sol-Gel Sci. Technol. 49, 35–46 (2009)CrossRefGoogle Scholar
  35. 35.
    J. Wang, J. Xiang, S. Duo, W. Li, M. Li, L. Bai, J. Mater. Sci. Mater. Electron. 20, 319–322 (2009)CrossRefGoogle Scholar
  36. 36.
    R. Thielsch, K. Kaemmer, B. Holzapfel, L. Schultz, Thin Solid Films 301, 203–210 (1997)CrossRefGoogle Scholar
  37. 37.
    Y. Fan, S. Yu, R. Sun, L. Li, Y. Yin, K.W. Wong, R. Du, Appl. Surf. Sci. 256, 6531–6535 (2010)CrossRefGoogle Scholar
  38. 38.
    J. Liao, X. Wei, Z. Xu, X. Wei, P. Wang, Mater. Chem. Phys. 135, 1030–1035 (2012)CrossRefGoogle Scholar
  39. 39.
    M.B. Gonzalez, A. Wu, P.M. Vilarinho, Chem. Mater. 18, 1737–1744 (2006)CrossRefGoogle Scholar
  40. 40.
    M.M. Rashad, D.A. Rayan, A.O. Turky, M.M. Hessien, J. Magn. Magn. Mater. 374, 359–366 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electronic & Magnetic Materials LaboratoryCentral Metallurgical Research and Development InstituteHelwan, CairoEgypt
  2. 2.Institut Européen des MembranesUMR5635 CNRS-UM-ENSCMMontpellier Cedex 5France
  3. 3.Department of Inorganic Nonmetallic MaterialsUniversity of Science and Technology BeijingBeijingChina
  4. 4.Institut Européen des Membranes, IEM – UMR 5635, ENSCM, CNRSUniversity of MontpellierMontpellierFrance

Personalised recommendations