Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14557–14566 | Cite as

Structural and dielectric behaviour analysis of TiO2 addition on the ceramic matrix BiVO4

  • R. G. M. Oliveira
  • G. S. Batista
  • J. E. V. de Morais
  • M. M. Costa
  • M. A. S. Silva
  • J. W. O. Bezerra
  • A. S. B. Sombra
Article
  • 71 Downloads

Abstract

In this work, the dielectric and electric properties of the ceramic matrix BiVO4 (BVO) and the effects of the addition of TiO2 were analysed by impedance spectroscopy (IS). The BVO phase was calcined at 773 K and used to prepare the composite ceramic which the titanium oxide was added (15, 30 and 60 wt% TiO2), molded in pellet shape and sintered at 1073 K. These samples were characterized by X-ray diffraction (XRD). The thermo-activated charge transfer process for the ceramics BVO with the respective additions was observed and the electric results were compared with the electric response of equivalent circuit composed of three associations in parallel with R-CPE and represented by the Nyquist diagram. At room temperature and in the frequency range of 1 Hz, the samples presented high relative permittivity, εr = 26k to approximately 35k, and a dielectric loss at the order of 10−2 at 1 MHz. The composites presented negative and positive values of the temperature coefficient of capacitance (TCC) along TiO2 composition. Through IS coupled with temperature variation, the activation energies were measured; the values showed decrease with increasing withTiO2 concentration.

Notes

Acknowledgements

The authors are grateful to CNPq (402045/2013-0), the US Air Force Office of Scientific Research (AFOSR) (FA9550-16-1-0127), CNPq (Process: 402561/2007-4, Edital MCT/CNPq nº 10/2007) for providing financial support and Foundation for Research Support of the State of Mato Grosso (FAPEMAT).

References

  1. 1.
    P. Pookmanee, S. Kojinok, S. Phanichphant, J. Met. Mater. Miner. 22, 49 (2012)Google Scholar
  2. 2.
    D. Zhou, L.-X. Pang, J. Guo, Z.-M. Qi, T. Shao, Q.-P. Wang, H.-D. Xie, X. Yao, C.A. Randall, Inorg. Chem. 53, 1048 (2014)CrossRefGoogle Scholar
  3. 3.
    B. Zhou, J. Qu, X. Zhao, H. Liu, J. Environ. Sci. 23, 151 (2011)CrossRefGoogle Scholar
  4. 4.
    I. Vinke, J. Diepgrond, B. Boukamp, K. Devries, A. Burggraaf, Solid State Ion. 57, 83 (1992)CrossRefGoogle Scholar
  5. 5.
    D.V.M. Paiva, M.A.S. Silva, A.S.B. Sombra, P.B.A. Fechine, RSC Adv. 6, 42502 (2016)CrossRefGoogle Scholar
  6. 6.
    X. Lin, L. Yu, L. Yan, H. Li, Y. Yan, C. Liu, H. Zhai, Solid State Sci. 32, 61 (2014)CrossRefGoogle Scholar
  7. 7.
    A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 121, 11459 (1999)CrossRefGoogle Scholar
  8. 8.
    J.Z. Yin, S.B. Huang, Z.C. Jian, M.L. Pan, Y.Q. Zhang, Z.B. Fei, X.R. Xu, Appl. Phys. A 120, 1529 (2015)CrossRefGoogle Scholar
  9. 9.
    U. Lamdab, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, J. Mater. Sci. 50, 5788 (2015)CrossRefGoogle Scholar
  10. 10.
    T. Saison, N. Chemin, C. Chanéac, O. Durupthy, L. Mariey, F. Maugé, V. Brezová, J.-P. Jolivet, J. Phys. Chem. C 119, 12967 (2015)CrossRefGoogle Scholar
  11. 11.
    G.H. Chen, F.F. Gu, M. Pan, L.Q. Yao, M. Li, X. Chen, Y. Yang, T. Yang, C.L. Yuan, C.R. Zhou, J. Mater. Sci.: Mater. Electron. 26, 6511 (2015)Google Scholar
  12. 12.
    S.-H. Wee, D.-W. Kim, S.-I. Yoo, J. Am. Ceram. Soc. 87, 871 (2004)CrossRefGoogle Scholar
  13. 13.
    R.G.M. Oliveira, M.C. Romeu, M.M. Costa, P.M. Silva, J.M.S. Filho, C.C.M. Junqueira, A.S.B. Sombra, J. Alloys Compd. 584, 295 (2014)CrossRefGoogle Scholar
  14. 14.
    M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57 (2008)CrossRefGoogle Scholar
  15. 15.
    K.M. Luk, K.W. Leung, Dielectric Resonator Antennas (Research Studies Press, Hertfordshire, 2003)Google Scholar
  16. 16.
    A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications (Wiley, New York, 2003)CrossRefGoogle Scholar
  17. 17.
    B. Ghosh, A. Dutta, T.P. Sinha, J. Alloys Compd. 554, 80 (2013)CrossRefGoogle Scholar
  18. 18.
    P. Hollins, Spectrochim. Acta A 44, 853 (1988)CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, T. Tong, W. Kinsman, P. Jiang, G. Yin, S. Li, J. Alloys Compd. 549, 358 (2013)CrossRefGoogle Scholar
  20. 20.
    R.N. Bhowmik, I. Panneer Muthuselvam, J. Magn. Magn. Mater. 335, 64 (2013)CrossRefGoogle Scholar
  21. 21.
    H.M. Rietveld, Acta Crystallogr. 22, 151 (1967)CrossRefGoogle Scholar
  22. 22.
    L. Bleicher, J.M. Sasaki, C.O. Paiva Santos, J. Appl. Crystallogr. 33, 1189 (2000)CrossRefGoogle Scholar
  23. 23.
    R.A. Young, A. Sakthivel, T.S. Moss, C.O. Paiva-Santos, J. Appl. Crystallogr. 28, 366 (1995)CrossRefGoogle Scholar
  24. 24.
    C. Pascoal, R. Machado, V.C. Pandolfelli, CerâMica 48, 61 (2002)CrossRefGoogle Scholar
  25. 25.
    X.-Z. Yuan, C. Song, H. Wang, J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells (Springer, London, 2010)CrossRefGoogle Scholar
  26. 26.
    K.P. Karishma, A. Kumari, Prasad, Am. J. Mater. Sci. 6, 1 (2016)Google Scholar
  27. 27.
    A. Roy, K. Prasad, A. Prasad, Process. Appl. Ceram. 7, 81 (2013)CrossRefGoogle Scholar
  28. 28.
    A.K. Roy, A. Singh, K. Kumari, K. Amar Nath, A. Prasad, K. Prasad, ISRN Ceram. (2012).  https://doi.org/10.5402/2012/854831 Google Scholar
  29. 29.
    P. Singh, A. Agarwal, S. Sanghi, N. Singh, S. Khasa, Physica B 407, 4752 (2012)CrossRefGoogle Scholar
  30. 30.
    B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 27, 342 (2016)Google Scholar
  31. 31.
    J.M.S. Filho, C.A. Rodrigues Junior, D.G. Sousa, R.G.M. Oliveira, M.M. Costa, G.C. Barroso, A.S.B. Sombra, J. Electron. Mater. 46, 4344 (2017)CrossRefGoogle Scholar
  32. 32.
    F. Shimizu, M. Takashige, S. Sawada, T. Yamaguchi, J. Phys. Soc. Jpn. 62, 2964 (1993)CrossRefGoogle Scholar
  33. 33.
    S. Pattanayak, R.N.P. Choudhary, P.R. Das, Electron. Mater. Lett. 10, 165 (2014)CrossRefGoogle Scholar
  34. 34.
    N. Roy, R.N.P. Choudhury, J. Mater. Sci.: Mater. Electron. 27, 947 (2016)Google Scholar
  35. 35.
    D. Prasanta, D. Debasis, P. Kausikisankar, P. Panchanan, Solid State Sci. 10, 1936 (2008)CrossRefGoogle Scholar
  36. 36.
    S. Mahboob, G. Prasad, G.S. Kumar, Bull. Mater. Sci. 29, 35 (2006)CrossRefGoogle Scholar
  37. 37.
    A.K. Jonscher, Nature 267, 673 (1977)CrossRefGoogle Scholar
  38. 38.
    N. Panda, B.N. Parida, R. Padhee, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 26, 3797 (2015)Google Scholar
  39. 39.
    S. Sumi, P.P. Rao, M. Deepa, P. Koshy, J. Appl. Phys. 108, 063718 (2010)CrossRefGoogle Scholar
  40. 40.
    K.A. Nath, K. Prasad, K.P. Chandra, A.R. Kulkarni, Adv. Mater. Res. 2, 119 (2013)CrossRefGoogle Scholar
  41. 41.
    A.K. Roy, K. Prasad, A. Prasad, ISRN Ceram. (2013).  https://doi.org/10.1155/2013/369670 Google Scholar
  42. 42.
    W. Bai, C. Chen, J. Yang, Y. Zhang, R. Qi, R. Huang, X. Tang, C.-G. Duan, J. Chu, Sci. Rep. 5, 17846 (2016)CrossRefGoogle Scholar
  43. 43.
    J. Liu, C.-G. Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, J. Chem. Phys. 119, 2812 (2003)CrossRefGoogle Scholar
  44. 44.
    G.E. El-Falaky, O.W. Guirguis, N.S.A. El-Aal, Prog. Nat. Sci. Mater. Int. 22, 86 (2012)CrossRefGoogle Scholar
  45. 45.
    M.K.H. Bhuiyan, M.A. Gafur, M.N.I. Khan, A.A. Momin, A.K.M.A. Hossain, Mater. Sci. Appl. 08, 64 (2017)Google Scholar
  46. 46.
    K. Brajesh, K. Kumari, World J. Condens. Matter Phys. 05, 209 (2015)CrossRefGoogle Scholar
  47. 47.
    M.M. Costa, G.F.M. Pires, A.J. Terezo, M.P.F. Graça, A.S.B. Sombra, J. Appl. Phys. 110, 034107 (2011)CrossRefGoogle Scholar
  48. 48.
    M. Ram, Appl. Phys. A 99, 437 (2010)CrossRefGoogle Scholar
  49. 49.
    Z.-L. Hou, M.-S. Cao, J. Yuan, X.-Y. Fang, X.-L. Shi, J. Appl. Phys. 105, 076103 (2009)CrossRefGoogle Scholar
  50. 50.
    W.-L. Song, M.-S. Cao, Z.-L. Hou, X.-Y. Fang, X.-L. Shi, J. Yuan, Appl. Phys. Lett. 94, 233110 (2009)CrossRefGoogle Scholar
  51. 51.
    M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, Carbon N.Y. 48, 788 (2010)CrossRefGoogle Scholar
  52. 52.
    M.-S. Cao, Z.-L. Hou, J. Yuan, L.-T. Xiong, X.-L. Shi, J. Appl. Phys. 105, 106102 (2009)CrossRefGoogle Scholar
  53. 53.
    A. Kahouli, C. Marichy, A. Sylvestre, N. Pinna, J. Appl. Phys. 117, 154101 (2015)CrossRefGoogle Scholar
  54. 54.
    D.C. Cronemeyer, Phys. Rev. 113, 1222 (1959)CrossRefGoogle Scholar
  55. 55.
    A.K. Ghosh, F.G. Wakim, R.R. Addiss, Phys. Rev. 184, 979 (1969)CrossRefGoogle Scholar
  56. 56.
    S. Sarkar, K.K. Chattopadhyay, Physica E 44, 1742 (2012)CrossRefGoogle Scholar
  57. 57.
    A.A. Keelani, S. Husain, Int. J. Adv. Res. 4, 1850 (2016)CrossRefGoogle Scholar
  58. 58.
    A. Shukla, R.N.P. Choudhary, A.K. Thakur, J. Phys. Chem. Solids 70, 1401 (2009)CrossRefGoogle Scholar
  59. 59.
    J.R. MacDonald, Appl. Opt. 28, 1083 (1989)CrossRefGoogle Scholar
  60. 60.
    H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, J. Magn. Magn. Mater. 316, 23 (2007)CrossRefGoogle Scholar
  61. 61.
    K.S. Cole, J. Chem. Phys. 10, 98 (1942)CrossRefGoogle Scholar
  62. 62.
    X.-Z. Yuan, C. Song, W. Haijiang, J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications (Springer, London, 2010)CrossRefGoogle Scholar
  63. 63.
    L. Hoffart, U. Heider, R.A. Huggins, W. Witschel, R. Jooss, A. Lentz, Ionics 2, 34 (1996)CrossRefGoogle Scholar
  64. 64.
    A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, Mater. Chem. Phys. 99, 150 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Telecommunication Engineering DepartmentFederal University of Ceará (UFC)FortalezaBrazil
  2. 2.LOCEM-Telecommunication and Materials Science and Engineering of Laboratory (LOCEM), Physics DepartmentFederal University of Ceará (UFC)FortalezaBrazil
  3. 3.Institute of PhysicsLACANM, UFMTCuiabáBrazil
  4. 4.Laboratorio de Redes de Comunicação e Segurança (LARCES)Universidade Estadual do CearáFortalezaBrazil
  5. 5.

Personalised recommendations