Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14535–14545 | Cite as

Enhancement of β-phase crystallization and electrical properties of PVDF by impregnating ultra high diluted novel metal derived nanoparticles: prospect of use as a charge storage device

  • D. Mondal
  • A. L. Gayen
  • B. K. Paul
  • P. Bandyopadhyay
  • D. Bera
  • D. S. Bhar
  • K. Das
  • P. Nandy
  • S. DasEmail author


Under certain conditions, ultra high diluted triturated material achieve nanodimension. This nanoparticle aspect of the materials has been used in various technical applications. The electrical properties of the polymer, Poly (vinylidene fluoride), commonly used as dielectric separator in high charge storage multilayer capacitor, get improved when doped with these triturated material. We have reported here how these effects get further increased by changing the doping concentration. With incorporation of 2 ml of triturated copper acetate salt, there are ~ 14.0, ~ 2.74, ~ 9.0 fold increment in β-phase, dielectric constant and ac conductivity respectively compared to the undoped polymer matrix. This is also associated with significant decrease (~ 66%) in tangent loss. Doping of these nanomaterials in the highly insulating matrix of the polymer is an effective way to fabricate composites with tunable dielectric behavior, making them a promising candidate in electronic industry. A device, using our material as separator have been designed and observed that the charge storing ability of the composite persists for more than 24 h. After 1 h of charging, maximum recorded voltage using our fabricated system is 2.034 V, whereas electrode separator system of commercial Li-polymer ion mobile battery can store 0.566 V.



The authors are thankful to the Central Council for Research in Homeopathy (CCRH), the Ministry of AYUSH, Govt. of India for providing the financial assistance. The study was undertaken in joint collaboration between Centre for Interdisciplinary Research and Education (CIRE), Kolkata and CCRH, New Delhi.


  1. 1.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer Science+Business Media, LLC, 1999).
  2. 2.
    J.R. Miller, P. Simon, Materials science: electrochemical capacitors for energy management. Science 321, 651–652 (2008)CrossRefGoogle Scholar
  3. 3.
    V. Subramanian, H. Zhu, R. Vajtai, P.M. Ajayan, B. Wei, Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 109, 20207–20214 (2005)CrossRefGoogle Scholar
  4. 4.
    S. Roy, P. Thakur, N.A. Hoque, N. Sepay, F. Khatun, A. Kool, S. Das, Electroactive and high dielectric folic acid/PVDF composite film rooted simplistic organic photovoltaic self-charging energy storage cell with superior energy density and storage capability. ACS Appl. Mater. Interf. 9, 24198–24209 (2017)CrossRefGoogle Scholar
  5. 5.
    B.E. Conway, Transition from ‘supercapacitor’ to ‘battery’ behavior in electrochemical energy storage. J. Electrochem. Soc. 138, 1539 (1991)CrossRefGoogle Scholar
  6. 6.
    A. Manivannan, P.N. Kumta, Advancing the supercapacitor materials and technology frontier for improving power quality. Electrochem. Soc. Interf. 19, 57–62 (2010)CrossRefGoogle Scholar
  7. 7.
    T. Nestler, R. Schmid, W. Münchgesang, V. Bazhenov, J. Schilm, T. Leisegang, D.C. Meyer, Separators—Technology Review: Ceramic Based Separators for Secondary Batteries, (2014), vol. 1597Google Scholar
  8. 8.
    C.M. Costa, J.L. Gomez Ribelles, S. Lanceros-Méndez, G.B. Appetecchi, B. Scrosati, Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems. J. Power Sources. 245, 779–786 (2014)CrossRefGoogle Scholar
  9. 9.
    P. Martins, A.C. Lopes, Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. (2014). Google Scholar
  10. 10.
    X. Wei, L.I. Xin-hai, G.U.O. Hua-jun, W. Zhi-xing, Y. Bo, W.U. Xian-wen, M. Science, S.B. Heidelberg, Preparation and properties of composite polymer electrolyte modified with nano-size rare earth oxide. J. Central South Univ. 2, 3378–3384 (2012)Google Scholar
  11. 11.
    H. Xu, Z. Dang, N. Bing, Y. Wu, D. Yang, H. Xu, Z. Dang, N. Bing, Y. Wu, D. Yang, Temperature dependence of electric and dielectric behaviors of Ni/polyvinylidene fluoride composites. J. Appl. Phys. (2010). Google Scholar
  12. 12.
    X. Zha, J. Pu, L. Ma, T. Li, R. Bao, L. Bai, Z. Liu, M. Yang, W. Yang, A particular interfacial strategy in PVDF/OBC/MWCNT nanocomposites for high dielectric performance and electromagnetic interference shielding. Compos. Part A. (2018). Google Scholar
  13. 13.
    Z. Dang, J. Wu, H. Xu, S. Yao, M. Jiang, J. Bai, Z. Dang, J. Wu, H. Xu, S. Yao, M. Jiang, Dielectric properties of upright carbon fiber filled poly (vinylidene fluoride) composite with low percolation threshold and weak temperature dependence. Appl. Phys. Lett. (2007) Google Scholar
  14. 14.
    H. Chang, C. Chang, Y. Tsai, Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon N. Y. 50, 2331–2336 (2012)CrossRefGoogle Scholar
  15. 15.
    L. Yang, J. Qiu, H. Ji, K. Zhu, J. Wang, Composites: Part A enhanced dielectric and ferroelectric properties induced by TiO2 @ MWCNTs nanoparticles in flexible poly (vinylidene fluoride) composites. Compos. Part A 65, 125–134 (2014)CrossRefGoogle Scholar
  16. 16.
    Q. Guo, Q. Xue, T. Wu, X. Pan, J. Zhang, X. Li, L. Zhu, Excellent dielectric properties of PVDF-based composites filled with carbonized PAN/PEG copolymer fibers. Compos. Part A. (2016). Google Scholar
  17. 17.
    J. Sun, Q. Xue, Q. Guo, Y. Tao, W. Xing, Composites: Part A excellent dielectric properties of polyvinylidene fluoride composites based on sandwich structured MnO2/graphene nanosheets/MnO2. Compos. Part A 67, 252–258 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide—MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822–2830 (2010)Google Scholar
  19. 19.
    K. Meeporn, S. Maensiri, P. Thongbai, Applied surface science abnormally enhanced dielectric permittivity in poly (vinylidene fluoride)/nanosized-La2NiO4–δ films. Appl. Surf. Sci. 380, 67–72 (2016)CrossRefGoogle Scholar
  20. 20.
    B. K. Paul, D. Roy, S. Manna, P. Nandy, S. Das, High dielectric response of cobalt aluminate mullite (CAM) nanocomposite over cobalt aluminate mullite polymer (CAMP) nanocomposite in PVDF matrix. J. Electroceram (2018). Google Scholar
  21. 21.
    W. Zhou, L. Dong, X. Sui, Q. Chen, Dielectric properties and thermal conductivity of PVDF reinforced with three types of Zn particles. Compos. Part A. (2015) Google Scholar
  22. 22.
    N.A. Hoque, P. Thakur, S. Roy, A. Kool, B. Bagchi, Er3+/Fe3+ stimulated electroactive, visible light emitting and high dielectric flexible PVDF films based piezoelectric nanogenerators: a simple and superior self-powered energy harvester with remarkable power density Er3+/Fe3+. ACS Appl. Mater. Interfaces 9, 23048–23059 (2017)Google Scholar
  23. 23.
    Z. Dang, B. Peng, D. Xie, S. Yao, M. Jiang, J. Bai, Z. Dang, B. Peng, D. Xie, S. Yao, M. Jiang, High dielectric permittivity silver/polyimide composite films with excellent thermal stability High dielectric permittivity silver/polyimide composite films. Appl. Phys. Lett. 112910, 18–21 (2014)Google Scholar
  24. 24.
    P. Thakur, A. Kool, B. Bagchi, N.A. Hoque, S. Das, P. Nandy, In situ synthesis of Ni(OH)2 nanobelt modified electroactive poly(vinylidene fluoride) thin films: remarkable improvement in dielectric properties. Phys. Chem. Chem. Phys. 17, 13082–13091 (2015)CrossRefGoogle Scholar
  25. 25.
    S.S. Commun, A. Press, D. Torre, M. Hysteresis, J. Wiley, N. York, H.M. Materials, N. Asi, K.A. Press, N.J. Chem, S.S. Chem, M.D. Materials, A.C.S.S. Series, H.M. Materials, N. Asi, K. Aca-, A. Press, E. Magnetochemistry, S. Topics, S.S. Physics, N. Holland, M. Ceramics, Novel ferroelectric polymer composites with high dielectric constants. Adv. Mater. 15, 1625–1629 (2003)CrossRefGoogle Scholar
  26. 26.
    W. Zhou, J. Zuo, W. Ren, Composites: Part A thermal conductivity and dielectric properties of Al/PVDF composites. Compos. Part A 43, 658–664 (2012)CrossRefGoogle Scholar
  27. 27.
    L. Zhang, W. Wang, X. Wang, P. Bass, Z. Cheng, L. Zhang, W. Wang, X. Wang, P. Bass, Z. Cheng, Metal-polymer nanocomposites with high percolation threshold and high dielectric constant metal-polymer nanocomposites with high percolation threshold and high dielectric constant. Appl. Phys. Lett. (2013). Google Scholar
  28. 28.
    B. Kumar, D. Roy, S. Batabyal, A. Bhattacharya, P. Nandy, S. Das, A comparative study of strontium and titanium doped mullite in PVDF matrix and their phase behavior, microstructure and electrical properties. Mater. Chem. Phys. 187, 119–132 (2017)CrossRefGoogle Scholar
  29. 29.
    W. Zhou, Q. Chen, X. Sui, L. Dong, Z. Wang, Enhanced thermal conductivity and dielectric properties of Al/β-SiC w/PVDF composites. Compos. Part A. (2015). Google Scholar
  30. 30.
    P. Thakur, A. Kool, B. Bagchi, S. Das, P. Nandy, Applied clay science enhancement of β phase crystallization and dielectric behavior of kaolinite/halloysite modified poly (vinylidene fluoride) thin films. Appl. Clay Sci. 99, 149–159 (2014)CrossRefGoogle Scholar
  31. 31.
    Z. Zhang, Y. Gu, S. Wang, M. Li, J. Bi, Z. Zhang, Composites: Part A enhancement of dielectric and electrical properties in BT/SiC/PVDF three-phase composite through microstructure tailoring. Compos. Part A 74, 88–95 (2015)CrossRefGoogle Scholar
  32. 32.
    B. Wang, H. Huang, Composites: Part A Incorporation of halloysite nanotubes into PVDF matrix: nucleation of electroactive phase accompany with significant reinforcement and dimensional stability improvement. Compos. Part A 66, 16–24 (2014)CrossRefGoogle Scholar
  33. 33.
    K. Halder, Influence of nickel ion-doped mullite composite on electrical properties, phase behavior, and microstructure of poly (vinylidene fluoride) matrix. J. Polym. Res. (2016). Google Scholar
  34. 34.
    P. Fakhri, H. Mahmood, B. Jaleh, A. Pegoretti, Improved electroactive phase content and dielectric properties of flexible PVDF nanocomposite films filled with Au- and Cu-doped graphene oxide hybrid nano filler. Synth. Met. 220, 653–660 (2016)CrossRefGoogle Scholar
  35. 35.
    P. Thakur, A. Kool, B. Bagchi, N.A. Hoque, S. Das, P. Nandy, RSC Advances Improvement of electroactive b phase nucleation loaded poly (vinylidene fluoride) thin films. RSC Adv. 5, 62819–62827 (2015)CrossRefGoogle Scholar
  36. 36.
    P. Thakur, A. Kool, B. Bagchi, S. Das, P. Nandy, Crystallization and dielectric properties of poly (vinylidene fluoride) thin films. Phys. Chem. Chem. Phys. 17, 1368–1378 (2014)CrossRefGoogle Scholar
  37. 37.
    A. Bruna, M. Arjmand, U. Sundararaj, R. Elida, S. Bretas, Novel composites of copper nanowire/PVDF with superior dielectric properties. Polymer 55, 226–234 (2014)CrossRefGoogle Scholar
  38. 38.
    M. Bambo, R. Moutloali, R. Krause, Polymer nanocomposite of PVDF/organoclay-copper nanoparticles hybrid: synthesis and characterization. Mater. Today Proc. 2, 3921–3931 (2015)CrossRefGoogle Scholar
  39. 39.
    P. Thakur, A. Kool, B. Bagchi, N.A. Hoque, S. Das, P. Nandy, RSC advances hexahydrate salts on electroactive b phase nucleation and dielectric properties of poly (vinylidene fl uoride) thin films. RSC Adv. 5, 28487–28496 (2015)CrossRefGoogle Scholar
  40. 40.
    S. Yao, Z. Dang, M. Jiang, H. Xu, J. Bai, S. Yao, Z. Dang, M. Jiang, H. Xu, Influence of aspect ratio of carbon nanotube on percolation threshold in ferroelectric polymer nanocomposite. Appl. Phys. Lett. (2007). Google Scholar
  41. 41.
    M. Panda, V. Srinivas, A.K. Thakur, M. Panda, V. Srinivas, A.K. Thakur, On the question of percolation threshold in polyvinylidene fluoride/nanocrystalline nickel composites. Appl. Phys. Lett. 92, 12–15 (2013)Google Scholar
  42. 42.
    Q. Chen, P. Du, L. Jin, W. Weng, G. Han, Q. Chen, P. Du, L. Jin, W. Weng, G. Han, Percolative conductor/polymer composite films with significant dielectric properties percolative conductor/polymer composite films with significant dielectric properties. Appl. Phys. Lett. 22912, 2005–2008 (2010)Google Scholar
  43. 43.
    A.L. Gayen, D. Mondal, D. Roy, P. Bandyopadhyay, S. Manna, R. Basu, S. Das, D.S. Bhar, B.K. Paul, P. Nandy, Improvisation of electrical properties of PVDF-HFP: use of novel metallic nanoparticles, J. Mater. Sci. Mater. Electron. 28, 14798 (2017)CrossRefGoogle Scholar
  44. 44.
    A. Chatterjee, B.K. Paul, S. Das, R. Basu, Effect of ultrahigh diluted homeopathic medicines on the electrical properties of PVDF-HFP. Int. J. High Dilution Res. 15, 10–17 (2016)Google Scholar
  45. 45.
    B.K. Paul, S. Kar, P. Bandyopadhyay, R. Basu, S. Das, D.S. Bhar, Significant enhancement of dielectric and conducting properties of electroactive polymer polyvinylidene fluoride films: an innovative use of Ferrum metallicum at different concentrations. Indian J. Res. Homoeopath. (2016). Google Scholar
  46. 46.
    A.L. Gayen, B.K. Paul, D. Roy, S. Kar, P. Bandyopadhyay, R. Basu, S. Das, R.K. Manchanda, A.K. Khurana, D. Nayak, P. Nandy, B.K. Paul, D. Roy, S. Kar, P. Bandyopadhyay, R. Basu, S. Das, A.L. Gayen, B.K. Paul, D. Roy, S. Kar, P. Bandyopadhyay, R. Basu, Enhanced dielectric properties and conductivity of triturated copper and cobalt nanoparticles-doped PVDF-HFP film and their possible use in electronic industry. Mater. Res. Innov. (2017). Google Scholar
  47. 47.
    P.S. Chikramane, D. Kalita, A.K. Suresh, S.G. Kane, J.R. Bellare, Why extreme dilutions reach non-zero asymptotes: a nanoparticulate hypothesis based on froth flotation. Langmuir, 28, 15864–15875 (2012)CrossRefGoogle Scholar
  48. 48.
    C. Ribeiro, C.M. Costa, D.M. Correia, J. Nunes-pereira, J. Oliveira, P. Martins, R. Gonçalves, V.F. Cardoso, S. Lanceros-méndez, Electroactive poly (vinylidene fluoride) -based structures for advanced applications. Nat. Publ. Gr. 13, 681–704 (2018)Google Scholar
  49. 49.
    P. Martins, C.M. Costa, M. Benelmekki, S. Lanceros-mendez, On the origin of the electroactive poly (vinylidene fluoride) b-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. CrystEngComm 14, 2807–2811 (2012)CrossRefGoogle Scholar
  50. 50.
    P. Martins, C. Caparros, R. Gonc, P.M. Martins, M. Benelmekki, G. Botelho, Role of nanoparticle surface charge on the nucleation of the electroactive β-poly (vinylidene fl uoride) nanocomposites for sensor and actuator applications. J. Phys. Chem. C 116(29), 15790–15794 (2012)CrossRefGoogle Scholar
  51. 51.
    C.M. Costa, Polymer composites and blends for battery separators: state of the art, challenges and future trends. J. Power Sources. (2015). Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. Mondal
    • 1
  • A. L. Gayen
    • 2
  • B. K. Paul
    • 2
    • 3
  • P. Bandyopadhyay
    • 1
    • 2
  • D. Bera
    • 2
  • D. S. Bhar
    • 2
  • K. Das
    • 1
  • P. Nandy
    • 2
  • S. Das
    • 1
    Email author
  1. 1.Department of PhysicsJadavpur UniversityKolkataIndia
  2. 2.Centre for Interdisciplinary Research and EducationKolkataIndia
  3. 3.CSIR-Central Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations