Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14528–14534 | Cite as

The coexisting negative and positive electrocaloric effect in (Pb0.97La0.02)(Zr, Sn, Ti)O3 antiferroelectric thick films optimized via phase transition procedure

  • Yong Li
  • Hongcheng Gao
  • Yunying Liu
  • Liwen Zhang
  • Xihong Hao
Article

Abstract

Pb0.97La0.02(Zr1 − xySnxTiy)O3 (PLZST, x = 0.37, 0.25 and 0.05; corresponding y = 0.08, 0.05 and 0.03) anti-ferroelectric (AFE) thick films with different phase structure were prepared by a sol–gel method. It is found that the PLZST thick films possess coexistence of the negative and positive electrocaloric effect (ECE). The negative ECE is caused by the transition from AFE to ferroelectric phase (FE) and enhanced as the AFE–FE switching field increases. The PLZST thick films for x = 0.37, 0.25 and 0.05 have the maximum negative temperature change ΔT of − 1.0, − 2.0 and − 4.1 °C near room temperature, respectively. Moreover, the maximum positive temperature change ΔT is 1.0, 5.4 and 6.1 °C near the Curie temperature in PLZST thick films (x = 0.37, 0.25 and 0.05), respectively, which is associated with the transition from induced FE to paraelectric state. The results indicate that the coexisting negative and positive ECE could be optimized by properly controlling the phase switching properties of AFEs.

Notes

Acknowledgements

The authors would like to acknowledge the financial support by the National Natural Science Foundation of China (51462027), the Ministry of Sciences and Technology of China through 973-Project (2014CB660811), the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT-A1605), the Natural Science Foundation of Inner Mongolia (2015JQ04, 2016MS0208, 2017MS0541), the Research Fund for Higher Education of Inner Mongolia (NJZY16161), the Grassland Talent Plan of Inner Mongolia Autonomous Region and the Innovation Fund of Inner Mongolia University of Science and Technology (2014QNGG01), the Innovation Guide Fund for Science and Technology of Inner Mongolia Autonomous Region (KCBJ2018034).

References

  1. 1.
    G.Z. Zhang, Q. Li, H.M. Gu, S.L. Jiang, K. Han, M.R. Gadinski, M.A. Haque, Q.M. Zhang, Q. Wang, Adv. Mater. 27, 1450 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Valant, Prog. Mater. Sci. 57, 980 (2015)CrossRefGoogle Scholar
  3. 3.
    H.C. Gao, N.N. Sun, Y. Li, Q.W. Zhang, X.H. Hao, L.B. Kong, Q. Wang, Ceram. Int. 42, 16439 (2016)CrossRefGoogle Scholar
  4. 4.
    H. Kaddoussi, A. Lahmar, Y. Gagou, B. Asbani, J.L. Dellis, G. Cordoyiannis, B. Allouche, H. Khemakhem, Z. Kutnjak, M. El Marssi, J. Alloys Compd 667, 198 (2016)CrossRefGoogle Scholar
  5. 5.
    X.H. Hao, J.W. Zhai, Appl. Phys. Lett. 104, 022902 (2014)CrossRefGoogle Scholar
  6. 6.
    S.G. Lu, B. Rožič, Q.M. Zhang, Z. Kutnjak, B. Neese, Appl. Phys. Lett. 98, 122906 (2011)CrossRefGoogle Scholar
  7. 7.
    J. Peräntie, J. Hagberg, A. Uusimäki, H. Jantunen, Phys. Rev. B 82, 134119 (2010)CrossRefGoogle Scholar
  8. 8.
    I. Ponomareva, S. Lisenkov, Phys. Rev. Lett. 108, 167604 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Bai, G.P. Zheng, S.Q. Shi, Mater. Res. Bull. 46, 1866 (2011)CrossRefGoogle Scholar
  10. 10.
    Z.P. Xu, Z.M. Fan, X.M. Liu, X.L. Tan, Appl. Phys. Lett. 110, 082901 (2017)CrossRefGoogle Scholar
  11. 11.
    R. Pirc, B. Rožič, J. Koruza, B. Malič, Z. Kutnjak, Europhys. Lett. 107, 17002 (2014)CrossRefGoogle Scholar
  12. 12.
    W.P. Geng, Y. Liu, X.J. Meng, L. Bellaiche, J.F. Scott, B. Dkhil, A.Q. Jiang, Adv. Mater. 27, 3165 (2015)CrossRefGoogle Scholar
  13. 13.
    H.C. Gao, X.H. Hao, Q.W. Zhang, S.L. An, L.B. Kong, J. Alloys Compd 690, 131 (2017)CrossRefGoogle Scholar
  14. 14.
    Y. Wang, X.H. Hao, J.B. Xu, J. Mater. Res. 27, 1770 (2012)CrossRefGoogle Scholar
  15. 15.
    X.H. Hao, Y. Wang, L. Zhang, L.W. Zhang, S.L. An, Appl. Phys. Lett. 102, 163903 (2013)CrossRefGoogle Scholar
  16. 16.
    X.H. Hao, J.W. Zhai, L.B. Kong, Z.K. Xu, Prog. Mater. Sci. 63, 1 (2014)CrossRefGoogle Scholar
  17. 17.
    A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Science 311, 1270 (2006)CrossRefGoogle Scholar
  18. 18.
    Y. Zhao, X.H. Hao, Q. Zhang, J. Mater. Chem. C 3, 1694 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Ye, T. Li, Q. Sun, Z.K. Liu, B.L. Peng, C.W. Huang, P. Lin, S.M. Ke, X.R. Zeng, X. Peng, L. Chene, H.T. Huang, J. Mater. Chem. C 4, 3375 (2016)CrossRefGoogle Scholar
  20. 20.
    S.G. Lu, Q.M. Zhang, Adv. Mater. 21, 1983 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yong Li
    • 1
  • Hongcheng Gao
    • 1
  • Yunying Liu
    • 1
  • Liwen Zhang
    • 1
  • Xihong Hao
    • 1
  1. 1.Inner Mongolia Key Laboratory of Ferroelectric-Related New Energy Materials and DevicesInner Mongolia University of Science and TechnologyBaotouChina

Personalised recommendations