Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14501–14507 | Cite as

Effect of thickness on the properties of ZnO thin films prepared by reactive RF sputtering

  • Kavindra Kandpal
  • Jitendra Singh
  • Navneet Gupta
  • Chandra Shekhar
Article
  • 75 Downloads

Abstract

This work reports structural and electrical properties of ZnO thin film deposited by reactive RF sputtering at the room temperature, for thin film transistor (TFT) applications. To study the thickness dependent effect, ZnO thin film of thicknesses 100, 200 and 800 nm were deposited over p-type silicon substrate. Structural properties of thin films have been characterized using X-ray Diffraction (XRD) and Atomic Force Microscopy (AFM). XRD analysis of 100 and 200 nm thick films shows dominant cubic phase of ZnO along with small presence of ZnO2, while; XRD analysis of 800 nm thick film confirms strong c-axis growth of wurtzite (W) ZnO. The XRD result confirm the polycrystalline nature of the thin film and shows that crystallinity improves with the film thickness. The AFM results confirm high step coverage of deposited thin films. From the thermionic transport model across the grain boundary it was observed that with an increase in film thickness mobility of carriers increases. The sheet resistance of undoped 100 and 200 nm ZnO film is found to be approximately 7 × 1011 Ω/□; while, the sheet resistance of 800 nm thick ZnO film shows almost 10 time reduction to 6.025 × 1010 Ω/□, owing to its improved crystallinity.

Notes

Acknowledgements

A portion of this research work was presented at the 17th International Conference of Thin Films (ICTF-2017), National Physical Laboratory (NPL) New Delhi, India. Authors also would like to acknowledge CSIR–CEERI (Central Electronics Engineering Research Institute) Pilani, India and Material Research Center MNIT Jaipur, India for providing the experimental facilities for this work.

References

  1. 1.
    E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, R. Martins, Appl. Phys. A 96, 197 (2009)CrossRefGoogle Scholar
  2. 2.
    M. Bender, E. Fortunato, P. Nunes, I. Ferreira, A. Marques, R. Martins, N. Katsarakis, V. Cimalla, G. Kiriakidis, Jpn. J. Appl. Phys. 42, L435 (2003)CrossRefGoogle Scholar
  3. 3.
    B.J. Norris, J. Anderson, J.F. Wager, D.A. Keszler, J. Phys. D Appl. Phys. 36, L105 (2003)CrossRefGoogle Scholar
  4. 4.
    K. Kandpal, N. Gupta, J. Mater. Sci. Mater. Electron. 28, 16013 (2017)CrossRefGoogle Scholar
  5. 5.
    K. Ellmer, A. Klein, B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells. Springer Series in Materials Science, 104 (Springer, Amsterdam, 2008)CrossRefGoogle Scholar
  6. 6.
    J.-Y. Kwon, D.-J. Lee, K.-B. Kim, Electron. Mater. Lett. 7, 1 (2011)CrossRefGoogle Scholar
  7. 7.
    G.H. Lee, T. Kawazoe, M. Ohtsu, Solid State Commun. 124, 163 (2002)CrossRefGoogle Scholar
  8. 8.
    Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, M. Wraback, J. Electron. Mater. 29, 69 (2000)CrossRefGoogle Scholar
  9. 9.
    E.M.C. Fortunato, A. Pimentel, A.M.F. Gonçalves, A.J.S. Marques, L.M.N. Pereira, R.F.P. Martins, Adv. Mater. 17, 590 (2005)CrossRefGoogle Scholar
  10. 10.
    W.J. Jeong, S.K. Kim, G.C. Park, Thin Solid Films 506, 180 (2006)CrossRefGoogle Scholar
  11. 11.
    D. Han, Y. Wang, S. Zhang, L. Sun, R. Han, S. Matsumoto, Y. Ino, Sci. China Inf. Sci. 55, 951 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Vishwas, K.N. Rao, A.R. Phani, K.V.A. Gowda, R.P.S. Chakradhar, J. Mater. Sci. Mater. Electron. 22, 1415 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Singh, S. Ranwa, J. Akhtar, M. Kumar, AIP Adv. 5, 67140 (2015)CrossRefGoogle Scholar
  14. 14.
    D. Zagorac, J.C. Schön, J. Zagorac, M. Jansen, Phys. Rev. B 89, 75201 (2014)CrossRefGoogle Scholar
  15. 15.
    S. Pat, R. Mohammadigharehbagh, S. Özen, V. Şenay, H.H. Yudar, Ş. Korkmaz, Vacuum 141, 210 (2017)CrossRefGoogle Scholar
  16. 16.
    A. Ashrafi, C. Jagadish, J. Appl. Phys. 102, 4 (2007)CrossRefGoogle Scholar
  17. 17.
    S. Sharma, C. Periasamy, P. Chakrabarti, Electron. Mater. Lett. 11, 1093 (2015)CrossRefGoogle Scholar
  18. 18.
    C. Periasamy, R. Prakash, P. Chakrabarti, J. Mater. Sci. Mater. Electron. 21, 309 (2010)CrossRefGoogle Scholar
  19. 19.
    J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)CrossRefGoogle Scholar
  20. 20.
    F.M. Hossain, J. Nishii, S. Takagi, A. Ohtomo, T. Fukumura, H. Fujioka, H. Ohno, H. Koinuma, M. Kawasaki, J. Appl. Phys. 94, 7768 (2003)CrossRefGoogle Scholar
  21. 21.
    Z. Zhang, C. Bao, Q. Li, S. Ma, S. Hou, J. Mater. Sci. Mater. Electron. 23, 376 (2012)CrossRefGoogle Scholar
  22. 22.
    X.-R. Deng, H. Deng, M. Wei, J.-J. Chen, J. Mater. Sci. Mater. Electron. 23, 413 (2012)CrossRefGoogle Scholar
  23. 23.
    G.Z. Xing, B. Yao, C.X. Cong, T. Yang, Y.P. Xie, B.H. Li, D.Z. Shen, J. Alloys Compd. 457, 36 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringBirla Institute of Technology and Science, PilaniPilaniIndia
  2. 2.Process Technology Group, Smart Sensors AreaCSIR-Central Electronics Engineering Research InstitutePilaniIndia

Personalised recommendations