Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14479–14486 | Cite as

Enhanced energy storage property and dielectric tunability of Na0.5Bi0.5(Ti,W,Ni)O3 thin film on Bi(Fe,Mn)O3 buffered LaNiO3(100)/Si substrate

  • Panpan Lv
  • Shifeng Huang
  • Xin Cheng
  • Changhong Yang
  • Qian Yao
Article
  • 83 Downloads

Abstract

Na0.5Bi0.5(Ti,W,Ni)O3 (NBTWN) thin films were fabricated on the pure and Bi(Fe,Mn)O3 buffered Pt/TiO2/SiO2/Si and LaNiO3(100)/Si substrates by chemical solution deposition, respectively. The crystallization, surface morphology, and electrical properties of the four films are mainly investigated. The films, which are grown on the Pt/TiO2/SiO2/Si substrates, exhibit similar polycrystalline structure. Whereas for films deposited on the LaNiO3 (100)/Si substrates, strong (l00) orientations are observed. Compared with the NBTWN film on pure Pt/TiO2/SiO2/Si, the introduction of Bi(Fe,Mn)O3 buffer layer and LaNiO3 oxide electrode can promote the grain growth of the NBTWN resulting in larger grain size. Large remanent polarization and breakdown strength can be observed in films with Bi(Fe,Mn)O3 buffer layers. Furthermore, the combination of low leakage current and good energy storage capacity, together with high dielectric tunability is achieved in NBTWN/Bi(Fe,Mn)O3/LaNiO3(100)/Si heterostructure. The enhancement in electrical properties may be attributed to the preferred crystalline orientation and optimized grain size depending on both the buffer layer and the electrode that are used.

Notes

Acknowledgements

This work was supported by funding from the National Natural Science Foundation of China (51632003).

References

  1. 1.
    X.H. Hao, J. Adv. Dielectr. 3, 1330001 (2013)CrossRefGoogle Scholar
  2. 2.
    S.G. Lu, X.H. Zhu, C.L. Mak, K.H. Wong, H.L. Chan, C.L. Choy, Appl. Phys. Lett. 82, 2877 (2003)CrossRefGoogle Scholar
  3. 3.
    S.L. Jiang, L. Zhang, G.Z. Zhang, S.S. Liu, J.Q. Yi, X. Xiong, Y. Yu, J.G. He, Y.K. Zeng, Ceram. Int. 39, 5571 (2013)CrossRefGoogle Scholar
  4. 4.
    K. Li, D. Rémiens, X.L. Dong, J. Costecalde, N. Sama, X.Y. Lei, T. Li, G. Du, G.S. Wang, Mater. Lett. 107, 361 (2013)CrossRefGoogle Scholar
  5. 5.
    B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)Google Scholar
  6. 6.
    C.H. Yang, Y.J. Han, X.S. Sun, J. Chen, J. Qian, L.X. Chen, Ceram. Int. 44, 6330 (2018)CrossRefGoogle Scholar
  7. 7.
    D.J. Eichorst, T.N. Blanton, C.L. Barnesand, L.A. Bosworth, Integr. Ferroelectr. 239, 4 (1994)Google Scholar
  8. 8.
    C.A. Pazde, L.D. McMillan, B.M. Melnick, J.D. Cuchiaro, J.F. Scott, Ferroelectrics 104, 241 (1990)CrossRefGoogle Scholar
  9. 9.
    R. Ramesh, T. Sands, V.G. Keramids, D.K. Fork, Mater. Sci. 22, 233 (1994)Google Scholar
  10. 10.
    R. Gupta, S. Chaudhary, R.K. Kotnala, ACS Appl. Mater. Interfaces 7, 8472 (2015)CrossRefGoogle Scholar
  11. 11.
    J.G. Wu, G.Q. Kang, J. Wang, Appl. Phys. Lett. 95, 192901 (2009)CrossRefGoogle Scholar
  12. 12.
    L.W. Martin, Y.-H. Chu, R. Ramesh, Mater. Sci. Eng. R 68, 89 (2010)CrossRefGoogle Scholar
  13. 13.
    T. Nakamura, Y. Nakao, A. Kamisawa, H. Takasu, Jpn. J. Appl. Phys. 33, 5207 (1994)CrossRefGoogle Scholar
  14. 14.
    H. Lee, W. Lee, Jpn. J. Appl. Phys. 40, 6566 (2001)CrossRefGoogle Scholar
  15. 15.
    D.Y. Guo, M.Y. Li, L. Pei, B.F. Yu, G.Z. Wu, X.Z. Zhao, Y.B. Wang, Y. Jun, J. Phys. D 39, 5033 (2006)CrossRefGoogle Scholar
  16. 16.
    M.S. Chen, T.B. Wu, J.M. Wu, Appl. Phys. Lett. 68, 1430 (1996)CrossRefGoogle Scholar
  17. 17.
    G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)CrossRefGoogle Scholar
  18. 18.
    A. Wold, B. Post, E. Banks, J. Am. Chem. Soc. 79, 4911 (1957)CrossRefGoogle Scholar
  19. 19.
    M. Bousquet, J.R. Duclere, B. Gautier, A. Boulle, A. Wu, S. Députier, D. Fasquelle, F. Rémondière, D. Albertini, C. Champeaux, P. Marchet, M. Guilloux-Viry, P. Vilarinho, J. Appl. Phys. 111, 104106 (2012)CrossRefGoogle Scholar
  20. 20.
    J.H. Wang, Y. Li, N.N. Sun, Q.W. Zhang, L.W. Zhang, X.H. Hao. X.J. Chou, J. Alloy. Compd. 727, 596 (2017)CrossRefGoogle Scholar
  21. 21.
    X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L.M. Driscoll, Appl. Phys. Lett. 86, 062903 (2005)CrossRefGoogle Scholar
  22. 22.
    J.F. Scott, C.A. Araujo, B.M. Melnick, L.D. McMillan, R. Zuleeg, J. Appl. Phys. 70, 232 (1991)CrossRefGoogle Scholar
  23. 23.
    R.Y. Zheng, C.H. Sim, J. Wang, S. Ramakrishna, J. Am. Ceram. Soc. 91, 3240 (2008)CrossRefGoogle Scholar
  24. 24.
    S.K. Singh, H. Ishiwara, K. Maruyama, Appl. Phys. Lett. 88, 262908 (2006)CrossRefGoogle Scholar
  25. 25.
    Y.Y. Wu, X.H. Wang, C.F. Zhong, L.T. Li, J. Eur. Ceram. Soc. 38, 1434 (2018)CrossRefGoogle Scholar
  26. 26.
    X. Zhu, T. Zhu, Z. Liu, N. Ming, Appl. Phys. A 72, 503 (2001)CrossRefGoogle Scholar
  27. 27.
    X. Zhu, T. Zhu, S. Zhou, Q.Z. Liu, N. Ming, Appl. Phys. Lett. 79, 1345 (2001)CrossRefGoogle Scholar
  28. 28.
    S. Abou Dargham, F. Ponchel, N. Abboud, A. Ferri, R. Desfeux, J. Assaad, D. Remiens, D. Zaouk, J. Eur. Ceram. Soc. 38, 1450 (2018)CrossRefGoogle Scholar
  29. 29.
    F. Yan, M.O. Lai, L. Liu, T.J. Zhu, J. Phys. D: Appl. Phys. 44, 435302 (2011)CrossRefGoogle Scholar
  30. 30.
    L.X. Zhang, X.B. Ren, Phys. Rev. B 73, 094121 (2006)CrossRefGoogle Scholar
  31. 31.
    C.M. Folkman, S.H. Baek, C.T. Nelson, H.W. Jang, T. Tybell, X.Q. Pan, C.B. Eom, Appl. Phys. Lett. 96, 052903 (2010)CrossRefGoogle Scholar
  32. 32.
    M. Suzuki, A. Morishita, Y. Kitanaka, Y. Noguchi, M. Miyayama, Jpn. J. Appl. Phys. 49, 09MD09 (2010)Google Scholar
  33. 33.
    J.W. Xu, X.P. Lu, L. Yang, C.R. Zhou, Y.Y. Zhao, H.B. Zhang, X.W. Zhang, W. Qiu, H. Wang, J. Mater. Sci. 52, 10062 (2017)CrossRefGoogle Scholar
  34. 34.
    P. Li, J.W. Zhai, B. Shen, W. Li, H.R. Zeng, K.Y. Zhao, J. Eur. Ceram. Soc. 37, 3319 (2017)CrossRefGoogle Scholar
  35. 35.
    L. Zhang, X.H. Hao, L.W. Zhang, J.C. Yang, S. Li, J. Mater. Sci.: Mater. Electron. 24, 3830 (2013)Google Scholar
  36. 36.
    L. Zhang, X.H. Hao, L.W. Zhang, Ceram. Int. 40, 8847 (2014)CrossRefGoogle Scholar
  37. 37.
    J.H. Wang, N.N. Sun, Y. Li, Q.W. Zhang, X.H. Hao, X.J. Chou, Ceram. Int. 43, 7804 (2017)CrossRefGoogle Scholar
  38. 38.
    D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998)CrossRefGoogle Scholar
  39. 39.
    K.H. Yoon, J.H. Sohn, B.D. Lee, Appl. Phys. Lett. 81, 5012 (2002)CrossRefGoogle Scholar
  40. 40.
    J.G. Wu, D.Q. Xiao, Y.Y. Wang, J.G. Zhu, J.L. Zhu, R.S. Xie, J. Am. Ceram. Soc. 91, 3786 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsUniversity of JinanJinanChina
  2. 2.School of Materials Science and EngineeringUniversity of JinanJinanChina

Personalised recommendations