Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14471–14478 | Cite as

Structural, Raman spectroscopic and microwave dielectric studies on (1 − x) NiZrNb2O8 − x ZnTa2O6

  • Mengjuan Wu
  • Yingchun Zhang
  • Maoqiao Xiang
Article
  • 78 Downloads

Abstract

(1 − x) NiZrNb2O8 − x ZnTa2O6 microwave dielectric ceramics were prepared via the conventional solid-state reaction route. Structural and lattice parameters of the (1 − x) NiZrNb2O8 − x ZnTa2O6 ceramics were analyzed through X-ray diffraction, Raman spectra, and scanning electron microscopy. The results showed that there were serious ionic diffusion and solid solution reaction in the composite ceramics. The substitution of Ni2+, Zr4+, and Zn2+ at A-sites and the substitution of Nb5+ and Ta5+ at B-sites led to the change of the lattice parameters. There was a gradual transformation in crystal structure from monoclinic phase into Tri-αPbO2 phase with the increasing ZnTa2O6 content. With the increase of x value from 0 to 1, the εr value increased from 23.76 to 35.71 and the Q × ƒ value increased from 32107 to 46709 GHz. The temperature frequency resonance coefficient near zero could be obtained at x = 0.8. The 0.2NiZrNb2O8 − 0.8ZnTa2O6 ceramics were obtained at 1275 °C with excellent microwave dielectric properties: εr ~ 33.69, Q × ƒ ~ 37,529 GHz and τƒ ~ + 2.56 ppm/°C.

Notes

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (No. 51772022).

References

  1. 1.
    P. Zhang, L. Liu, M. Xiao, J. Mater. Sci. 28, 5057–5063 (2018)Google Scholar
  2. 2.
    T. Xie, L. Hao, L. Zhang, H. Ren, M. Dang, S. Jiang, X. Zhao, F. Meng, H. Lin, J. Mater. Sci. 29, 7114–7118 (2018)Google Scholar
  3. 3.
    Q. Deng, C. Huang, H. Wang, L. Zhao, C. Shen, J. Mater. Sci. 29, 4035–4040 (2018)Google Scholar
  4. 4.
    H. Wu, E.S. Kim, Ceram. Int. 42, 5785–5791 (2016)CrossRefGoogle Scholar
  5. 5.
    W.S. Xia, F.Y. Yang, G.Y. Zhang, K. Han, D.C. Guo, J. Alloys. Compd. 656, 470–475 (2016)CrossRefGoogle Scholar
  6. 6.
    Z. Fu, J. Ma, P. Liu, Y. Liu, Mater. Chem. Phys. 200, 264–269 (2017)CrossRefGoogle Scholar
  7. 7.
    M. Dang, H. Ren, X. Yao, H. Peng, T. Xie, H. Lin, L. Luo, J. Am. Cream. Soc. 101, 3026–3031 (2018)CrossRefGoogle Scholar
  8. 8.
    W. Wang, W. Bai, B. Shen, J. Zhai, Ceram. Int. 41, S435–S440 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Ma, Z. Fu, P. Liu, L. Zhao, B. Guo, J. Alloys Compd. 709, 299–303 (2017)CrossRefGoogle Scholar
  10. 10.
    A. Manan, Z. Ullah, A.S. Ahmad, A. Ullah, D.F. Khan, A. Hussain, M.U. Khan, J. Adv. Ceram. 7, 72–78 (2018)CrossRefGoogle Scholar
  11. 11.
    G. Zhang, J. Guo, X. Yuan, H. Wang, J. Eur. Ceram. Soc. 38, 813–816 (2018)CrossRefGoogle Scholar
  12. 12.
    Y. Lai, C. Hong, L. Jin, X. Tang, H. Zhang, X. Huang, J. Li, H. Su, Ceram. Int. 43, 16167–16173 (2017)CrossRefGoogle Scholar
  13. 13.
    P.L. Wise, I.M. Reaney, W.E. Lee, J. Mater. Res. 17, 2033–2040 (2002)CrossRefGoogle Scholar
  14. 14.
    E.S. Kim, B.S. Chun, D.H. Kang, J. Eur. Ceram. Soc. 27, 3005–3010 (2007)CrossRefGoogle Scholar
  15. 15.
    H. Lee, I.T. Kim, K.S. Hong, Jpn. J. Appl. Phys. 36, 1318–1320 (1997)CrossRefGoogle Scholar
  16. 16.
    B.H. Toby, J. Appl. Cryst. 34, 210–213 (2001)CrossRefGoogle Scholar
  17. 17.
    M. Daturi, G. Busca, M.M. Borel, A. Leclaire, P. Piaggio, J. Phys. Chem. B101, 4358–4369 (1997)CrossRefGoogle Scholar
  18. 18.
    B.W. Hakki, P.D. Coleman, IEE Trans. Microw. Theory 8, 402–410 (1960)CrossRefGoogle Scholar
  19. 19.
    W.E. Courtney, IEEE Trans. Microw. Theory 18, 476–485 (1970)CrossRefGoogle Scholar
  20. 20.
    Y. Kobayashiy, M. Katoh, IEEE Trans. Microw. Theory 33, 586–592 (1985)CrossRefGoogle Scholar
  21. 21.
    M. Wu, Y. Zhang, J. Chen, M. Xiang, J. Alloys Compd. 747, 394–400 (2018)CrossRefGoogle Scholar
  22. 22.
    H. Lee, K.S. Hong, I.T. Kim, J. Mater. Res. 12, 1437–1440 (1997)CrossRefGoogle Scholar
  23. 23.
    C.L. Huang, J.Y. Chen, J. Am. Cream. Soc. 92, 1845–1848 (2010)CrossRefGoogle Scholar
  24. 24.
    S. Keshri, K. Singh, Phase Transit. 90, 1121–1127 (2017)CrossRefGoogle Scholar
  25. 25.
    R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)CrossRefGoogle Scholar
  26. 26.
    S.D. Ramarao, V.R.K. Murthy, Dalton Trans. 44, 2311–2324 (2015)CrossRefGoogle Scholar
  27. 27.
    Y. Zhang, Y. Zhang, M. Xiang, J. Eur. Ceram. Soc. 36, 1945–1951 (2016)CrossRefGoogle Scholar
  28. 28.
    H.T. Wu, Z.B. Feng, Q.J. Mei, J.D. Guo, J.X. Bi, J. Alloys Compds. 648, 368–373 (2015)CrossRefGoogle Scholar
  29. 29.
    D.L. Rousseau, R.P. Bauman, S.P.S. Porto, J. Raman Spectrosc. 10, 253–290 (1981)CrossRefGoogle Scholar
  30. 30.
    W.S. Kim, T.H. Kim, E.S. Kim, K.H. Yoon, Jpn. J. Appl. Phys. 37, 5367–5371 (1998)CrossRefGoogle Scholar
  31. 31.
    D.A. Sagala, S. Nambu, J. Am. Ceram. Soc. 75, 2573–2575 (1992)CrossRefGoogle Scholar
  32. 32.
    E.L. Colla, I.M. Reaney, N. Setter, J. Appl. Phys. 74, 3414–3425 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.State Key Laboratory of Multiphase Complex Systems, Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations