Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14455–14461 | Cite as

Low temperature sintering and microwave dielectric properties of Li2O–3ZnO–5TiO2 ceramics doped with V2O5

  • Jianhua Zhu
  • Jinyuan Liu
  • Yong Zeng
Article
  • 67 Downloads

Abstract

Novel low-temperature sinterable Li2O–3ZnO–5TiO2 (LZT135) ceramics were prepared through a solid-state reaction method. XRD and EDS results showed that the LZT135 ceramics formed solid solutions with a crystal structure similar to Zn2Ti3O8. The addition of V2O5 could decrease the sintering temperature of LZT135 ceramics to about 900 °C. When 0.6 wt% V2O5 was added, the LZT135 ceramics exhibited dielectric properties with relative permittivity (εr) = 20.2, quality factor (Q×f) = 59,000 GHz, and temperature coefficient of resonant frequency (τf) = − 30.2 ppm/°C at a sintering temperature of 900 °C. However, the τf value was still too high for industrial applications; therefore, TiO2 was added to the LZT135 ceramics to further adjust the τf value. Finally, near-zero τf values and simultaneously desirable Q×f values were maintained for the low-temperature sintered LZT135 ceramics. The LZT135 ceramics doped with 0.6 wt% V2O5 and 6 wt% TiO2 exhibited reasonably good microwave dielectric properties with εr = 24.3, Q×f = 51,700 GHz, and τf = 0.3 ppm/°C when sintered at 900 °C, thus showing a great potential for low-temperature co-firing ceramic applications.

References

  1. 1.
    M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57 (2008)CrossRefGoogle Scholar
  2. 2.
    S. George, P.S. Anjana, V.N. Deepu, P. Mohanan, M.T. Sebastian, J. Am. Ceram. Soc. 92, 1244 (2009)CrossRefGoogle Scholar
  3. 3.
    L.L. Yuan, J.J. Bian, Ferroelectrics 387, 123 (2009)CrossRefGoogle Scholar
  4. 4.
    D. Zhou, H. Wang, L.X. Pang, X. Yao, X.G. Wu, J. Am. Ceram. Soc. 91, 4115 (2008)CrossRefGoogle Scholar
  5. 5.
    A.Y. Borisevich, P.K. Davies, J. Am. Ceram. Soc. 85, 573 (2002)CrossRefGoogle Scholar
  6. 6.
    S. Bahel, R. Singh, G. Kaur, S.B. Narang, Ferroelectrics 502, 49 (2016)CrossRefGoogle Scholar
  7. 7.
    X.K. Lan, Z.Y. Zou, W.Z. Lu, J.H. Zhu, W. Lei, Ceram. Int. 42, 17731 (2016)CrossRefGoogle Scholar
  8. 8.
    Q.S. Cao, W.Z. Lu, X.C. Wang, J.H. Zhu, B. Ullah, W. Lei, Ceram. Int. 41, 9152 (2015)CrossRefGoogle Scholar
  9. 9.
    H.W. Chen, H. Su, H.W. Zhang, T.C. Zhou, B.W. Zhang, J.F. Zhang, X.L. Tang, Ceram. Int. 40, 14655 (2014)CrossRefGoogle Scholar
  10. 10.
    S. George, M.T. Sebastian, J. Am. Ceram. Soc. 93, 2164 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Georg, M.T. Sebastian, Int. J. Appl. Ceram. Technol. 8, 1400 (2011)CrossRefGoogle Scholar
  12. 12.
    H.F. Zhou, X.B. Liu, X.L. Chen, L. Fang, Y.L. Wang, J. Eur. Ceram. Soc. 32, 261 (2012)CrossRefGoogle Scholar
  13. 13.
    T.W. Zhang, R.Z. Zuo, Y. Wang, J. Mater. Sci.: Mater. Electron. 25, 5570 (2014)Google Scholar
  14. 14.
    Y. Wu, D. Zhou, J. Guo, L.X. Pang, J. Mater. Sci.: Mater. Electron. 24, 1505 (2013)Google Scholar
  15. 15.
    A. Sayyadi-Shahraki, E. Taheri-Nassaj, S.A. Hassanzadeh-Tabrizi, H. Barzegar-Bafrooei, J. Alloy. Compd. 597, 161 (2014)CrossRefGoogle Scholar
  16. 16.
    H.S. Ren, S.H. Jiang, M.Z. Dang, T.Y. Xie, H. Tang, H.Y. Peng, H.X. Lin, L. Luo, J. Alloy. Compd. 740, 1188 (2018)CrossRefGoogle Scholar
  17. 17.
    H.S. Ren, H.Y. Peng, T.Y. Xie, L. Hao, M.Z. Dang, Y. Zhang, S.H. Jiang, X.G. Yao, H.X. Lin, L. Luo, J. Mater. Sci.: Mater. Electron. 29, 9033 (2018)Google Scholar
  18. 18.
    X.B. Liu, H.F. Zhou, X.L. Chen, L. Fang, J. Alloy. Compd. 515, 22 (2012)CrossRefGoogle Scholar
  19. 19.
    H.F. Zhou, X.H. Tan, J. Huang, X.L. Chen, Ceram. Int. 43, 3688 (2017)CrossRefGoogle Scholar
  20. 20.
    M. He, H.W. Zhang, J. Alloy. Compd. 586, 627 (2014)CrossRefGoogle Scholar
  21. 21.
    H.F. Zhou, H. Wang, X.Y. Ding, X. Yao, J. Mater. Sci.: Mater. Electron. 20, 39 (2009)Google Scholar
  22. 22.
    W.C. Tzou, C.F. Yang, Y.C. Chen, P.S. Cheng, J. Eur. Ceram. Soc. 20, 991 (2000)CrossRefGoogle Scholar
  23. 23.
    A.E. Paladino, J. Am. Ceram. Soc. 54, 168 (1971)CrossRefGoogle Scholar
  24. 24.
    K. Fukuda, R. Kitoh, I. Awai, Jpn. J. Appl. Phys. 32, 4584 (1993)CrossRefGoogle Scholar
  25. 25.
    W. Lei, W.Z. Lu, J.H. Zhu, X.H. Wang, Mater. Lett. 61, 4066 (2007)CrossRefGoogle Scholar
  26. 26.
    B.W. Hakki, P.D. Coleman, IEEE Trans. Microwave Theory Tech. 8, 402 (1960)CrossRefGoogle Scholar
  27. 27.
    W.E. Courtney, IEEE Trans. Microwave Theory Tech. 18, 476 (1970)CrossRefGoogle Scholar
  28. 28.
    C.H. Hsu, Y.H. Chang, H.W. Yang, J.S. Lin, Ceram. Int. 39, 203 (2013)CrossRefGoogle Scholar
  29. 29.
    B.D. Silverman, Phys. Rev. 125, 1921 (1962)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Optoelectronic EngineeringShenzhen UniversityShenzhenPeople’s Republic of China
  2. 2.Shenzhen Zhenhua Fu Electronics Co., Ltd.ShenzhenPeople’s Republic of China

Personalised recommendations