Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14435–14444 | Cite as

Enhanced magnetoelectric voltage in ferrite/PZT/ferrite composite for AC current sensor application

  • A. Aubert
  • V. Loyau
  • G. Chaplier
  • F. Mazaleyrat
  • M. LoBue
Article
  • 130 Downloads

Abstract

In this paper, we report the fabrication of a rare-earth free current sensor based on a PZT/NiCoZn-ferrite magnetoelectric (ME) trilayer composite disk. To improve the sensitivity of the sensor, the structure uses an in-plane series connection, which increases the ME voltage by two for a fixed volume. Then, we propose a full characterization of the sensor: electrical modeling, low and high frequency limits, sensitivity, linearity, distortion and resolution. The device is also evaluated under sinus, square, and triangle waveform currents, which are excitation signals commonly used in the field of electrical engineering. The current sensor shows high current sensitivity (90 mV/A), good linearity from 0.001 to 30 A and low added impedance (0.01 Ω) in a frequency range of 10 Hz–30 kHz for a very compact structure (4 cm3). It also exhibits a high resolution of 1 mA (for a 1 A peak signal) and good stability.

References

  1. 1.
    E. Du Trémolet de Lacheisserie, Magnetostriction, Theory and Applications of Magnetoelasticity (CRC Press, Boca Raton, FL, 1993)Google Scholar
  2. 2.
    C. Fang, J. Jiao, J. Ma, D. Lin, H. Xu, X. Zhao, H. Luo, Significant reduction of equivalent magnetic noise by in-plane series connection in magnetoelectric Metglas/Mn-doped Pb(Mg1/3 Nb2/3)O3-PbTiO3 laminate composites. J. Phys. D: Appl. Phys. 48(46), 465002 (2015)CrossRefGoogle Scholar
  3. 3.
    D. Burdin, D. Chashin, N. Ekonomov, L. Fetisov, Y. Fetisov, M. Shamonin, DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures. J. Phys. D: Appl. Phys. 49(37), 375002 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Reis, M. Silva, N. Castro, V. Correia, P. Martins, A. Lasheras, J. Gutierrez, J. Barandiaran, J. Rocha, S. Lanceros-Mendez, Characterization of Metglas/poly(vinylidene fluoride)/Metglas magnetoelectric laminates for AC/DC magnetic sensor applications. Mater. Des. 92, 906 (2016)CrossRefGoogle Scholar
  5. 5.
    Z. Chu, H. Shi, M. Pourhosseiniasl, J. Wu, W. Shi, X. Gao, X. Yuan, S. Dong, A magnetoelectric flux gate: new approach for weak DC magnetic field detection. Sci. Rep. 7(1), 8592 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Dong, J.G. Bai, J. Zhai, J.F. Li, G.Q. Lu, D. Viehland, S. Zhang, T.R. Shrout, Circumferential-mode, quasi-ring-type, magnetoelectric laminate composite-a highly sensitive electric current and or vortex magnetic field sensor. Appl. Phys. Lett. 86(18), 182506 (2005)CrossRefGoogle Scholar
  7. 7.
    C.M. Leung, S.W. Or, S. Zhang, S.L. Ho, Ring-type electric current sensor based on ring-shaped magnetoelectric laminate of epoxy-bonded Tb0.3Dy0.7Fe1.92 short-fiber/NdFeB magnet magnetostrictive composite and Pb(Zr, Ti)O3 piezoelectric ceramic. J. Appl. Phys. 107(9), 09D918 (2010)CrossRefGoogle Scholar
  8. 8.
    J. Zhang, P. Li, Y. Wen, W. He, A. Yang, C. Lu, J. Qiu, J. Wen, J. Yang, Y. Zhu, M. Yu, High-resolution current sensor utilizing nanocrystalline alloy and magnetoelectric laminate composite. Rev. Sci. Instrum. 83(11), 115001 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Zhang, P. Li, Y. Wen, W. He, A. Yang, C. Lu, Packaged current-sensing device with self-biased magnetoelectric laminate for low-frequency weak-current detection. Smart Mater. Struct. 23(9), 095028 (2014)CrossRefGoogle Scholar
  10. 10.
    C. Lu, P. Li, Y. Wen, A. Yang, C. Yang, D. Wang, W. He, J. Zhang, Zero-biased magnetoelectric composite Fe73.5Cu1Nb3Si13.5B9/Ni/Pb(Zr1-x,Tix)O3 for current sensing. J. Alloys Comp. 589, 498 (2014)CrossRefGoogle Scholar
  11. 11.
    X. Yu, G. Lou, H. Chen, C. Wen, S. Lu, A slice-type magnetoelectric laminated current sensor. IEEE Sens. J. 15(10), 5839 (2015)CrossRefGoogle Scholar
  12. 12.
    V. Loyau, V. Morin, G. Chaplier, M. LoBue, F. Mazaleyrat, Magnetoelectric effect in layered ferrite/PZT composites. Study of the demagnetizing effect on the magnetoelectric behavior. J. Appl. Phys. 117(18), 184102 (2015)CrossRefGoogle Scholar
  13. 13.
    V. Loyau, V. Morin, J. Fortineau, M. LoBue, F. Mazaleyrat, A method to decrease the harmonic distortion in Mn-Zn ferrite/PZT and Ni-Zn ferrite/PZT layered composite rings exhibiting high magnetoelectric effects. J. Appl. Phys. 118(15), 154101 (2015)CrossRefGoogle Scholar
  14. 14.
    W. He, J. Zhang, C. Qu, J. Wu, J. Peng, A passive electric current sensor based on ferromagnetic invariant elastic alloy, piezoelectric ceramic, and permalloy yoke. IEEE Trans. Magn. 52(7), 1 (2016)Google Scholar
  15. 15.
    M. Bichurin, R. Petrov, V. Leontiev, G. Semenov, O. Sokolov, Magnetoelectric current sensors. Sensors 17(6), 1271 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Guo, T. Wang, D. Shi, P. Xiao, Q. Zheng, C. Xu, K.H. Lam, D. Lin, Strong piezoelectricity and multiferroicity in BiFeO3-BaTiO3-NdCoO3 lead-free piezoelectric ceramics with high curie temperature for current sensing application. J. Mater. Sci. Mater. Electron. 28(7), 5531 (2017)CrossRefGoogle Scholar
  17. 17.
    C.M. Leung, X. Zhuang, D. Friedrichs, J. Li, R.W. Erickson, V. Laletin, M. Popov, G. Srinivasan, D. Viehland, Highly efficient solid state magnetoelectric gyrators. Appl. Phys. Lett. 111(12), 122904 (2017)CrossRefGoogle Scholar
  18. 18.
    C.E. Ciomaga, O.G. Avadanei, I. Dumitru, M. Airimioaei, S. Tascu, F. Tufescu, L. Mitoseriu, Engineering magnetoelectric composites towards application as tunable microwave filters. J. Phys. D: Appl. Phys. 49(12), 125002 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Han, L. Li, F. Wang, Y. Yuan, Y. Miao, J. Zhao, K. Zhang, Electric-field switch of magnetization in BaTiO3-Na0.5Bi0.5TiO3-NiFe2O4 composite. J. Mater. Sci. Mater. Electron. 26(11), 8261 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Han, F. Wang, K. Zhang, A novel magnetoelectric memory cell based on bilayer ferroelectric films of (1-x)[Ba(Zr0.2Ti0.8)O3]-x(Ba0.7Ca0.3TiO3). J. Mater. Sci. Mater. Electron. 27(7), 7374 (2016)CrossRefGoogle Scholar
  21. 21.
    W. Kleemann, Multiferroic and magnetoelectric nanocomposites for data processing. J. Phys. D: Appl. Phys. 50(22), 223001 (2017)CrossRefGoogle Scholar
  22. 22.
    X. Guo, B. Cui, C. Guan, D. Li, K. Wu, J. Yun, T. Wang, Y. Peng, Y. Zuo, L. Xi, Electric field modulation of reversible and non-volatile magnetic anisotropy transition in (011) 0.7[Pb(Mg 1/3 Nb 2/3)O3]-0.3[PbTi0.3 O3]/FeSi heterostructures. J. Phys. D: Appl. Phys. 50(33), 335001 (2017)CrossRefGoogle Scholar
  23. 23.
    Z. Chen, C. Gao, Y. Wei, P. Zhang, Y. Wang, C. Zhang, Z. Ma, Large non-volatile tuning of magnetism mediated by electric field in (Mg1/3 Nb2/3)O3-PbTiO3 heterostructure. J. Phys. D: Appl. Phys. 50(23), 235005 (2017)CrossRefGoogle Scholar
  24. 24.
    Y. Zhou, S. Priya, Composite Magnetoelectrics (Woodhead Publishing Series in Electronic and Optical Materials, Woodhead Publishing, Cambridge, 2015), p. 209CrossRefGoogle Scholar
  25. 25.
    D. Sander, S.O. Valenzuela, D. Makarov, C.H. Marrows, E.E. Fullerton, P. Fischer, J. McCord, P. Vavassori, S. Mangin, P. Pirro, B. Hillebrands, A.D. Kent, T. Jungwirth, O. Gutfleisch, C.G. Kim, A. Berger, The 2017 magnetism roadmap. J. Phys. D: Appl. Phys. 50(36), 363001 (2017)CrossRefGoogle Scholar
  26. 26.
    V. Loyau, A. Aubert, M. LoBue, F. Mazaleyrat, Analytical modeling of demagnetizing effect in magnetoelectric ferrite/PZT/ferrite trilayers taking into account a mechanical coupling. J. Magn. Magn. Mater. 426, 530 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Karki, Signal conditioning piezoelectric sensors (Tech. rep, Texas Instruments, 2000). http://www.ti.com/lit/an/sloa033a/sloa033a.pdf
  28. 28.
    A. Aubert, V. Loyau, F. Mazaleyrat, M. LoBue, Uniaxial anisotropy and enhanced magnetostriction of CoFe2O4 induced by reaction under uniaxial pressure with SPS. J. Eur. Ceram. Soc. 37(9), 3101 (2017)CrossRefGoogle Scholar
  29. 29.
    Y. Liu, G. Xu, H. Lv, C. Huang, Y. Chen, Y. Bie, J. Zhang, T. Liu, N. Hu, G. Deng, L. Pei, J. Shi, R. Xiong, Magnetoelectric ceramic composites prepared by spark plasma sintering with notably enhanced magnetoelectric effect. J. Mater. Sci. Mater. Electron. 28(4), 3746 (2017)CrossRefGoogle Scholar
  30. 30.
    M.I. Bichurin, D.A. Filippov, V.M. Petrov, V.M. Laletsin, N. Paddubnaya, G. Srinivasan, Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites. Phys. Rev. B 68, 132408 (2003)CrossRefGoogle Scholar
  31. 31.
    A. Aubert, V. Loyau, F. Mazaleyrat, M. LoBue, Enhancement of the magnetoelectric effect in multiferroic CoFe2O4/PZT bilayer by induced uniaxial magnetic anisotropy. IEEE Trans. Magn. 53(11), 1 (2017)CrossRefGoogle Scholar
  32. 32.
    H. Xu, Y. Pei, D. Fang, P. Wang, Nonlinear harmonic distortion effect in magnetoelectric laminate composites. Appl. Phys. Lett. 105(1), 012904 (2014)CrossRefGoogle Scholar
  33. 33.
    D. Burdin, D. Chashin, N. Ekonomov, L. Fetisov, Y. Fetisov, G. Sreenivasulu, G. Srinivasan, Nonlinear magneto-electric effects in ferromagnetic-piezoelectric composites. J. Magn. Magn. Mater. 358–359, 98 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Shi, Y.W. Gao, Theoretical study on nonlinear magnetoelectric effect and harmonic distortion behavior in laminated composite. J. Alloys Comp. 646, 351 (2015)CrossRefGoogle Scholar
  35. 35.
    D. Burdin, D. Chashin, N. Ekonomov, Y. Fetisov, Static deformation of a ferromagnet in alternating magnetic field. J. Magn. Magn. Mater. 406, 217 (2016)CrossRefGoogle Scholar
  36. 36.
    X. Yan, B. Peng, J. Zou, X. Zeng, Evolution of phase structure and enhancement of piezoelectric properties in (K0.5Na0.5)0.94Li0.06NbO3-SrZrO3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 28(4), 3581 (2017)CrossRefGoogle Scholar
  37. 37.
    H. Zhang, D. Zheng, S. Hu, C. Cheng, G. Peng, J. Zhang, L. Li, Structural and electrical properties of Bi1/2Na1/2TiO3-BaTiO3-Sr3CuNb2O9 lead-free piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 28(1), 67 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SATIE UMR 8029 CNRS, ENS Paris-SaclayUniversité Paris-SaclayCachanFrance

Personalised recommendations