Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14427–14434 | Cite as

Thermoluminescence characteristics of biological tissue equivalent single crystal: europium doped lithium tetraborate for dosimetry applications

  • Ravikumar Nattudurai
  • Arun Kumar Raman
  • Chetan B. Palan
  • Shreeniwas K. Omanwar
Article
  • 46 Downloads

Abstract

The Eu doped Li2B4O7 (Eu:LTB) is a low effective atomic number (Zeff), biological tissue equivalent material that is commonly used for medical and nuclear research. Eu:LTB compound was synthesized by a two-step solid-state reaction method. Single crystal was grown from melt by Czochralski technique. The phase purity of crystalline materials was investigated by using powder X-ray diffraction study. Thermoluminescence study was carried out after exposing the crystalline samples to γ-irradiation in various dose ranges of 26, 52, 78, 104, 130 and 156 Gy. Parameters associated in thermoluminescence process of Eu:LTB crystal such as glow curve measurements, dose response, fading analysis, reusability test, TL emission, computerized deconvolution analysis and kinetic parameters like activation energy (E), frequency factor (s) and order of kinetics (b) are discussed. These appealing features indicated that; the grown Eu: LTB single crystal is useful in radiation dosimetry applications particularly in medical and nuclear research.

Notes

Acknowledgements

The authors are thankful to the University Grants Commission—Department of Atomic Energy—Consortium for Scientific Research (UGC-DAE-CSR), Kalpakkam and Indore, India for granting the research project (CSR–KN/CSR–63/2014–2015/503) to carry out the research work.

References

  1. 1.
    L. Singh, V. Chopra, S.P. Lochab, J. Lumin. 131, 1177–1183 (2011)CrossRefGoogle Scholar
  2. 2.
    K.-S. Park, J.K. Ahn, D.J. Kim, H.K. Kim, Y.M. Hwang, D.S. Kim, M.H. Park, Y. Park, J.-J. Yoon, J.-Y. Leem, J. Cryst. Growth 249, 483–486 (2003)CrossRefGoogle Scholar
  3. 3.
    M. Ishii, Y. Kuwano, S. Asaba, T. Asai, M. Kawamura, N. Senguttuvan, T. Hayashi, M. Koboyashi, M. Nikl, S. Hosoya, K. Sakai, T. Adachi, T. Oku, H.M. Shimizu, Radiat. Meas. 38, 571–574 (2004)CrossRefGoogle Scholar
  4. 4.
    Y. Kutomi, N. Takeuchi, J. Mater. Sci. Lett. 5, 51–53 (1986)CrossRefGoogle Scholar
  5. 5.
    O. Annalakshmi, M.T. Jose, G. Amarendra, Radiat. Meas. 46, 669–675 (2011)CrossRefGoogle Scholar
  6. 6.
    A. Kelemen, D. Mesterházy, M. Ignatovych, V. Holovey, Radiat. Phys. Chem. 81, 1533–1535 (2012)CrossRefGoogle Scholar
  7. 7.
    A.C. Fernandes, M. Osvay, J.P. Santos, V. Holovey, M. Ignatovych, Radiat. Meas. 43, 476–479 (2008)CrossRefGoogle Scholar
  8. 8.
    Z. Özdemir, G. Özbayoğlu, A. Yilmaz, J. Mater. Sci. 42, 8501–8508 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Kayhan, A. Yilmaz, J. Alloys Compd. 509, 7819–7825 (2011)CrossRefGoogle Scholar
  10. 10.
    R.K. Tamrakar, D.P. Bisen, N. Brahme, Luminescence 31, 8–15 (2016)CrossRefGoogle Scholar
  11. 11.
    G. Tiwari, N. Brahme, R. Sharma, D.P. Bisen, S.K. Sao, U.K. Kurrey, J. Mater. Sci.: Mater. Electron. 27, 6399–6407 (2016)Google Scholar
  12. 12.
    M. Ignatovych, M. Fasoli, A. Kelemen, Radiat. Phys. Chem. 81, 1528–1532 (2012)CrossRefGoogle Scholar
  13. 13.
    N. Can, T. Karali, P.D. Townsend, F. Yildiz, J. Phys. D 39, 2038–2043 (2006)CrossRefGoogle Scholar
  14. 14.
    S. Kar, C. Debnath, S. Verma, V.P. Dhamgaye, G.S. Lodha, K.S. Bartwal, Physica B 456, 1–4 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Kar, S. Bairagi, C. Debnath, S. Verma, K.S. Bartwal, Appl. Phys. Lett. 101, 071904 (2012)CrossRefGoogle Scholar
  16. 16.
    Q. Zhang, M. Rong, H. Tan, Z. Wang, Q. Wang, Q. Zhou, G. Chen, J. Mater. Sci.: Mater. Electron. 27, 13093–13098 (2016)Google Scholar
  17. 17.
    M. Takenaga, O. Yamamoto, T. Yamashita, Nucl. Instrum. Methods 175, 77–78 (1980)CrossRefGoogle Scholar
  18. 18.
    N. Senguttuvan, M. Ishii, M. Shimoyama, M. Kobayashi, N. Tsutsui, M. Nikl, M. Dusek, H.M. Shimizu, T. Oku, T. Adachi, K. Sakai, Nucl. Instrum. Methods Phys. Res. A 486, 264–267 (2002)CrossRefGoogle Scholar
  19. 19.
    Y. Wu, P. Fu, F. Zheng, S. Wan, X. Guan, Opt. Mater. 23, 373–375 (2003)CrossRefGoogle Scholar
  20. 20.
    R. Arun Kumar, J. Chem. (2013).  https://doi.org/10.1155/2013/154862 Google Scholar
  21. 21.
    A.N. Shekhovtsov, A.V. Tolmachev, M.F. Dubovik, E.F. Dolzhenkova, T.I. Korshikova, B. VGrinyov, V.N. Baumer, O.V. Zelenskaya, J. Cryst. Growth 242, 167–171 (2002)CrossRefGoogle Scholar
  22. 22.
    S.-L. Hong, B.-C. Wu, Opt. Eng. 34, 1738–1738 (1995)CrossRefGoogle Scholar
  23. 23.
    A. Kumaresh, R. Arun Kumar, N. Ravikumar, U. Madhusoodanan, B.S. Panigrahi, K. Marimuthu, M. Anuradha, Chin. Phys. B 25, 058105 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Thomas, M.L. Chithambo, Opt. Mater. 64, 302–309 (2017)CrossRefGoogle Scholar
  25. 25.
    P. Sengar, H.A. Borbón-Nuñez, Ch.J. Salas-Juárez, E.M. Aguilar, C. Cruz-Vázquez, R. Bernal, G.A. Hirata, Mater. Res. Bull. 90, 195–204 (2017)CrossRefGoogle Scholar
  26. 26.
    M. Chowdhury, S.K. Sharma, S.P. Lochab, Ceram. Int. 42, 5472–5478 (2016)CrossRefGoogle Scholar
  27. 27.
    G. Nag Bhargavi, A. Khare, N. Brahme, Optik 129, 83–92 (2017)CrossRefGoogle Scholar
  28. 28.
    R. Chen, J. Mater. Sci. 11, 1521–1541 (1976)CrossRefGoogle Scholar
  29. 29.
    M.T. Jose, S.R. Anishia, O. Annalakshmi, V. Ramasamy, Radiat. Meas. 46, 1026–1032 (2011)CrossRefGoogle Scholar
  30. 30.
    K.K. Gupta, R.M. Kadam, N.S. Dhoble, S.P. Lochab, V. Singh, S.J. Dhoble, J. Alloys Compd. 688, 982–993 (2016)CrossRefGoogle Scholar
  31. 31.
    D. Joseph Daniel, U. Madhusoodanan, O. Annalakshmi, M.T. Jose, P. Ramasamy, Opt. Mater. 45, 224–228 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ravikumar Nattudurai
    • 1
  • Arun Kumar Raman
    • 1
    • 2
  • Chetan B. Palan
    • 3
  • Shreeniwas K. Omanwar
    • 3
  1. 1.GRD Centre for Materials ResearchPSG College of TechnologyCoimbatoreIndia
  2. 2.Department of PhysicsPSG College of TechnologyCoimbatoreIndia
  3. 3.Department of PhysicsSant Gadge Baba Amravati UniversityAmravatiIndia

Personalised recommendations