Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14396–14405 | Cite as

Significance of encapsulating organic temperature sensors through spatial atmospheric atomic layer deposition for protection against humidity

  • Mohammad Mutee ur Rehman
  • Muhammad Muqeet Rehman
  • Memoon Sajid
  • Jae-Wook Lee
  • Kyoung Hoan Na
  • Jeong Beom Ko
  • Kyung Hyun Choi
Article
  • 94 Downloads

Abstract

Printed organic sensors are of significant importance owing to their simplicity, low cost, easy fabrication and solution processability. However, organic sensors often face the problem of performance degradation when exposed to ambient environment therefore, the effect of humidity needs to be studied for prolonging the lifetime of organic sensors. In this study, we propose atomically thin and highly reliable encapsulation layer on the surface of an organic functional material to enhance its lifetime as a temperature sensing unit. Our organic temperature sensor is based on a conductive and uniform IDT pattern deposited on a glass substrate through advanced printing technology of reverse offset. Thin film of PEDOT:PSS is used as the temperature sensitive functional layer deposited through electrohydrodynamic atomization while the organic thin film was encapsulated with aluminum oxide (Al2O3) through spatial atmospheric atomic layer deposition system (SAALD). The temperature range of the developed sensors was from 25 to 90 °C with relative humidity reaching up to 75% RH. The obtained results exhibited that Al2O3 encapsulation deposited through SAALD significantly enhanced the linearity, repeatability, endurance (50 cycles), retention (1 month) and lifetime of organic temperature sensor as compared to the non-encapsulated sensor. The performance degradation mechanism of non-encapsulated sensor due to humid environment has been discussed in detail. This study contributes an important step forward for preserving the performance and elongating the lifetime of organic electronic devices through a single atomically thin encapsulation.

Notes

Acknowledgements

This material is based upon work supported by the Ministry of Trade, industry & Energy (Ml, Korea) under Industrial Technology Innovation Program. No. 10063277, "Development of pattern deposition system based on roll to roll processing under low temperature and atmospheric pressure condition for smart thin film device fabrication". And we would like to acknowledge the financial support from the R&D Convergence Program of NST (National Research Council of Science & Technology) of Republic of Korea (CAP-15-04-KITECH).

Supplementary material

10854_2018_9572_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2024 KB)

Supplementary Video S1 (MP4 9077 KB)

Supplementary Video S2 (MP4 9850 KB)

Supplementary Video S3 (MP4 6696 KB)

10854_2018_9572_MOESM5_ESM.mp4 (2.6 mb)
Supplementary Video S4 (MP4 2637 KB)

References

  1. 1.
    N. Dubey, M. Leclerc, J. Polym. Sci. B 49, 467 (2011)CrossRefGoogle Scholar
  2. 2.
    T.K. Das, S. Prusty, Polym. Plast. Technol. Eng. 51, 1487 (2012)CrossRefGoogle Scholar
  3. 3.
    S.K. Mahadeva, S. Yun, J. Kim, Sens. Actuators A 165, 194 (2011)CrossRefGoogle Scholar
  4. 4.
    K.H. Choi, H.B. Kim, K. Ali, M. Sajid, G. Uddin Siddiqui, D.E. Chang, H.C. Kim, J.B. Ko, H.W. Dang, Y.H. Doh, Sci. Rep. 5, 15178 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Sajid, H.B. Kim, Y.J. Yang, J. Jo, K.H. Choi, Sens. Actuators B 246, 809 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Zhou, D.H. Anjum, L. Chen, X. Xu, I.A. Ventura, L. Jiang, G. Lubineau, J. Mater. Chem. C 2, 9903 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Ouyang, Y. Xie, D. Wang, D. Zhu, X. Xu, T. Tan, J. DeFranco, H.H. Fong, J. Polym. Sci. B 52, 1221 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Borghetti, M. Serpelloni, E. Sardini, S. Pandini, Sens. Actuators A 243, 71 (2016)CrossRefGoogle Scholar
  9. 9.
    A. Pierre, M. Sadeghi, M.M. Payne, A. Facchetti, J.E. Anthony, A.C. Arias, Adv. Mater. 26, 5722 (2014)CrossRefGoogle Scholar
  10. 10.
    X. Zhang, J. Wu, J. Wang, J. Zhang, Q. Yang, Y. Fu, Z. Xie, Sol. Energy Mater. Sol. Cells 144, 143 (2016)CrossRefGoogle Scholar
  11. 11.
    K.S. Karimov, Z. Ahmad, F. Touati, M. Mahroof-Tahir, M. Muqeet, Rehman, S. Zameer, Abbas, Chin. Phys. B 24, 116102 (2015)CrossRefGoogle Scholar
  12. 12.
    R.A. Nawrocki, E.M. Galiger, D.P. Ostrowski, B.A. Bailey, X. Jiang, R.M. Voyles, N. Kopidakis, D.C. Olson, S.E. Shaheen, Org. Electron. 15, 1791 (2014)CrossRefGoogle Scholar
  13. 13.
    K.H. Choi, J. Ali, Y.H. Doh, Jpn. J. Appl. Phys. 54, 035103 (2015)CrossRefGoogle Scholar
  14. 14.
    I.-H. Ko, S.-J. Kim, J. Lim, S.-H. Yu, J. Ahn, J.-K. Lee, Y.-E. Sung, Electrochim. Acta 187, 340 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Cho, M. Kim, J. Jang, ACS Appl. Mater. Interfaces 7, 10213 (2015)CrossRefGoogle Scholar
  16. 16.
    D. Yu, Y.-Q. Yang, Z. Chen, Y. Tao, Y.-F. Liu, Opt. Commun. 362, 43 (2016)CrossRefGoogle Scholar
  17. 17.
    M.S. Weaver, L.A. Michalski, K. Rajan, M.A. Rothman, J.A. Silvernail, J.J. Brown, P.E. Burrows, G.L. Graff, M.E. Gross, P.M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, M. Zumhoff, Appl. Phys. Lett. 81, 2929 (2002)CrossRefGoogle Scholar
  18. 18.
    D. Yang, Y.q. Yang, Y. Duan, P. Chen, C.L. Zang, Y. Xie, D.M. Liu, X. Wang, Y.H. Duan, F.B. Sun, Q. Gao, K.W. Xue, ECS Solid State Lett. 2, R31 (2013)CrossRefGoogle Scholar
  19. 19.
    S.M. Jeong, W.H. Koo, S.H. Choi, H.K. Baik, Solid State Electron. 49, 838 (2005)CrossRefGoogle Scholar
  20. 20.
    A.G. Erlat, R.J. Spontak, R.P. Clarke, T.C. Robinson, P.D. Haaland, Y. Tropsha, N.G. Harvey, E.A. Vogler, J. Phys. Chem. B 103, 6047 (1999)CrossRefGoogle Scholar
  21. 21.
    D.-S. Wuu, T.-N. Chen, C.-C. Wu, C.-C. Chiang, Y.-P. Chen, R.-H. Horng, F.-S. Juang, Chem. Vap. Depos. 12, 220 (2006)CrossRefGoogle Scholar
  22. 22.
    S.M. George, Chem. Rev. 110, 111 (2010)CrossRefGoogle Scholar
  23. 23.
    K. Ali, J. Ali, S.M. Mehdi, K.-H. Choi, Y.J. An, Appl. Surf. Sci. 353, 1186 (2015)CrossRefGoogle Scholar
  24. 24.
    C. Bali, A. Brandlmaier, A. Ganster, O. Raab, J. Zapf, A. Hübler, Mater. Today Proc. 3, 739 (2016)CrossRefGoogle Scholar
  25. 25.
    C.M. Homenick, R. James, G.P. Lopinski, J. Dunford, J. Sun, H. Park, Y. Jung, G. Cho, P.R.L. Malenfant, ACS Appl. Mater. Interfaces 8, 27900 (2016)CrossRefGoogle Scholar
  26. 26.
    M.M. Rehman, B.-S. Yang, Y. Yang, K.S. Karimov, K.H. Choi, Curr. Appl. Phys. 17, 533 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Ali, M.M. Rehman, G.U. Siddiqui, S. Aziz, K.H. Choi, Physica B 531, 223 (2018)CrossRefGoogle Scholar
  28. 28.
    M.M. Rehman, G.U. Siddiqui, M.M. ur Rehman, H.B. Kim, Y.H. Doh, K.H. Choi, Mater. Res. Bull. 105, 28 (2018)CrossRefGoogle Scholar
  29. 29.
    G.U. Siddiqui, M.M. Rehman, K.H. Choi, Polymer (Guildford) 100, 102 (2016)CrossRefGoogle Scholar
  30. 30.
    G.U. Siddiqui, M.M. Rehman, K.H. Choi, J. Mater. Chem. C 5, 5528 (2017)CrossRefGoogle Scholar
  31. 31.
    Y.J. Yang, M.M. Rehman, G.U. Siddiqui, K.H. Na, K.H. Choi, Curr. Appl. Phys. 17, 1733 (2017)CrossRefGoogle Scholar
  32. 32.
    G.U. Siddiqui, M.M. Rehman, Y.-J. Yang, K.H. Choi, J. Mater. Chem. C. 5, 862 (2017)CrossRefGoogle Scholar
  33. 33.
    M.M. Rehman, G.U. Siddiqui, J.Z. Gul, S.-W. Kim, J.H. Lim, K.H. Choi, Sci. Rep. 6, 36195 (2016)CrossRefGoogle Scholar
  34. 34.
    M.M. Rehman, G.U. Siddiqui, S. Kim, K.H. Choi, J. Phys. D 50, 335104 (2017)CrossRefGoogle Scholar
  35. 35.
    M.M. Rehman, G.U. Siddiqui, Y.H. Doh, K.H. Choi, Semicond. Sci. Technol. 32, 095001 (2017)CrossRefGoogle Scholar
  36. 36.
    G.U. Siddiqui, M. Sajid, J. Ali, S.W. Kim, Y.H. Doh, K.H. Choi, Sens. Actuators B 266, 354 (2018)CrossRefGoogle Scholar
  37. 37.
    F. Zhang, W. Yang, A. Pang, Z. Wu, H. Qi, J. Yao, Z. Fan, J. Shao, Appl. Surf. Sci. 254, 6410 (2008)CrossRefGoogle Scholar
  38. 38.
    M.M. ur Rehman, K.T. Kim, K.H. Na, K.H. Choi, Appl. Surf. Sci. 422, 273 (2017)CrossRefGoogle Scholar
  39. 39.
    J. Feng, C.-M. Chan, Polymer (Guildford) 41, 7279 (2000)CrossRefGoogle Scholar
  40. 40.
    T. Vuorinen, J. Niittynen, T. Kankkunen, T.M. Kraft, M. Mäntysalo, Sci. Rep. 6, 35289 (2016)CrossRefGoogle Scholar
  41. 41.
    M.D. Dankoco, G.Y. Tesfay, E. Benevent, M. Bendahan, Mater. Sci. Eng. B 205, 1 (2016)CrossRefGoogle Scholar
  42. 42.
    A. Benchirouf, S. Palaniyappan, R. Ramalingame, P. Raghunandan, T. Jagemann, C. Müller, M. Hietschold, O. Kanoun, Sens. Actuators B 224, 344 (2016)CrossRefGoogle Scholar
  43. 43.
    P. Kuberský, T. Syrový, A. Hamáček, S. Nešpůrek, J. Stejskal, Procedia Eng. 120, 614 (2015)CrossRefGoogle Scholar
  44. 44.
    U. Ail, M.J. Jafari, H. Wang, T. Ederth, M. Berggren, X. Crispin, Adv. Funct. Mater. 26, 6288 (2016)CrossRefGoogle Scholar
  45. 45.
    W.A. Daoud, J.H. Xin, Y.S. Szeto, Sens. Actuators B 109, 329 (2005)CrossRefGoogle Scholar
  46. 46.
    M. Kus, S. Okur, Sens. Actuators B 143, 177 (2009)CrossRefGoogle Scholar
  47. 47.
    T. Takano, H. Masunaga, A. Fujiwara, H. Okuzaki, T. Sasaki, Macromolecules 45, 3859 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Mutee ur Rehman
    • 1
  • Muhammad Muqeet Rehman
    • 2
  • Memoon Sajid
    • 1
    • 3
  • Jae-Wook Lee
    • 1
  • Kyoung Hoan Na
    • 4
  • Jeong Beom Ko
    • 5
  • Kyung Hyun Choi
    • 1
  1. 1.Department of Mechatronics EngineeringJeju National UniversityJeju CityRepublic of Korea
  2. 2.Faculty of Electrical EngineeringGIK Institute of Engineering Sciences & TechnologyTopiPakistan
  3. 3.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyIslamabadPakistan
  4. 4.Department of EngineeringDankook UniversityYonginRepublic of Korea
  5. 5.Korea Institute of Industrial TechnologyGangneungRepublic of Korea

Personalised recommendations