Microstructure, optical and electrical properties of Bi and Ba co-doped K0.52Na0.48NbO3 transparent ceramics

  • Qi Jin
  • Minhong JiangEmail author
  • Shengnan Han
  • Yafei Yan


A new Bi and Ba co-doped K0.52Na0.48NbO3 transparent ceramics were synthesized by using solid-state reaction method. Their microstructure, optical and electrical properties were studied. The results show that the obtained compact ceramic has a perovskite polycrystalline structure with cubic phase. Refinement on the crystalline structure shows that the Bi and Ba co-doping results in forming an interstitial solid solution in K0.52Na0.48NbO3 ceramic. An appropriate amount of Bi and Ba co-doping is helpful for improving the transparency and densification of the ceramics. The most transparency of the samples reaches a high value of about 60% in the near-IR region. The dielectric constant–temperature spectrum shows that with increasing the Bi and Ba content the dielectric constant–temperature transition peaks become to be more flat. The complex impedance plots exhibit two impedance semicircles identified within the frequency range of 1 kHz–1 MHz for all samples, which is explained by the grain and grain boundary effects. The presence of non-Debye type of relaxation has been observed by a complex impedance analysis.



The authors gratefully acknowledge technical assistance from Mr. Lin Li, Mr. Yusong Du and others at Guilin University of Electronic Technology. This work was supported by National Natural Science Foundation of China (61571142, 51562004, 51102056), Guangxi Natural Science Outstanding Youth Foundation (2016GXNSFFA380007), Guangxi Natural Science Foundation (2015GXNSFAA139276, 2016GXNSFGA380001), Guangxi Key Laboratory of Information Materials (Guilin University of Electronic Technology, Project No. 171004-Z) and Innovation Project of GUET Graduate Education.


  1. 1.
    G. Shirane, R. Newnham, R. Pepinsky, Phys. Rev. 96, 581 (1954)CrossRefGoogle Scholar
  2. 2.
    D.E. Harrison, G. Shirane, J. Electrochem. Soc. 108, 788 (1961)CrossRefGoogle Scholar
  3. 3.
    R.E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 45, 209 (2010)CrossRefGoogle Scholar
  4. 4.
    M. Jiang, X. Liu, G. Chen, Scr. Mater. 60, 909 (2009)CrossRefGoogle Scholar
  5. 5.
    M.H. Jiang, G.Q. Zhao, Z.F. Gu, G. Cheng, X.Y. Liu, L. Li, J. Mater. Sci.: Mater. Electron. 26, 9366 (2015)Google Scholar
  6. 6.
    J. Tellier, B. Malic, B. Dkhil, D. Jenko, J. Cilensek, M. Kosec, Solid State Sci. 11, 320 (2009)CrossRefGoogle Scholar
  7. 7.
    G.H. Haertling, C.E. Land, J. Am. Ceram. Soc. 54, 1 (2010)CrossRefGoogle Scholar
  8. 8.
    A. Sternberg, Ferroelectrics 91, 53 (1989)CrossRefGoogle Scholar
  9. 9.
    H. Jiang, Y.K. Zou, Q. Chen, K.K. Li, R. Zhang, Y.P. Wang, SPIE 5644, 380 (2005)Google Scholar
  10. 10.
    F. Li, K.W. Kwok, J. Eur. Ceram. Soc. 33, 123 (2013)CrossRefGoogle Scholar
  11. 11.
    K. Li, F.L. Li, Y. Wang, K.W. Kwok, H.L.W. Chan, Mater. Chem. Phys. 31, 1 (2011)CrossRefGoogle Scholar
  12. 12.
    K.W. Kwok, F. Li, D. Lin, Funct. Mater. Lett. 04, 237 (2011)CrossRefGoogle Scholar
  13. 13.
    R.S. Silva, L.M. Jesus, T.C. Oliveira, D.V. Sampaio, J.C.A. Santos, A.C. Hernandes, J. Eur. Ceram. Soc. 36, 4023 (2016)CrossRefGoogle Scholar
  14. 14.
    R. Wei, G. Li, J. Zeng, J. Bian, L.S. Kamzina, H. Zeng, J. Am. Ceram. Soc. 93, 2128 (2010)CrossRefGoogle Scholar
  15. 15.
    Y.P. Zhang, S.H. Lee, K.R. Reddy, A.L. Gopalan, K.P. Lee, J. Appl. Polym. Sci. 104, 2743 (2007)CrossRefGoogle Scholar
  16. 16.
    K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A 489, 1 (2015)CrossRefGoogle Scholar
  17. 17.
    W. Ge, Y. Zhang, J. Zhang, C.P. Devreugd, J. Li, D. Viehland, J. Appl. Phys. 111, 84 (2012)Google Scholar
  18. 18.
    D. Kobor, B. Guiffard, L. Lebrun, A. Hajjaji, D. Guyomar, J. Phys. D 40, 2920 (2007)CrossRefGoogle Scholar
  19. 19.
    M. Jiang, C.A. Randall, H. Guo, G. Rao, R. Tu, Z. Gu, J. Am. Ceram. Soc. 98, 2988 (2015)CrossRefGoogle Scholar
  20. 20.
    J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley, Inc., New York, 2005), pp. 1–26CrossRefGoogle Scholar
  21. 21.
    D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)CrossRefGoogle Scholar
  22. 22.
    J. Suchanicz, Mater. Sci. Eng. B 55, 114 (1998)CrossRefGoogle Scholar
  23. 23.
    D.C. Sinclair, A.R. West, Phys. Rev. B 39, 13486 (1989)CrossRefGoogle Scholar
  24. 24.
    A. Niemer, R. Pankrath, K. Betzler, M. Burianek, M. Muehlberg, J. Phys.: Condens. Mater. 2, 80 (2012)Google Scholar
  25. 25.
    X.L. Han, Q. Zhu, Y. Liu, Q. Xiao, F.L. Jiang, R. Li, Spectrochim. Acta A 74, 781 (2009)CrossRefGoogle Scholar
  26. 26.
    A. Srivastava, A. Garg, F.D. Morrison, J. Appl. Phys. 105, 054103 (2009)CrossRefGoogle Scholar
  27. 27.
    S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Appl. Phys. A 112, 387 (2013)CrossRefGoogle Scholar
  28. 28.
    Q.Z. Chai, X. Zhao, X. Chao, Z. Yang, RSC Adv. 7, 28428 (2017)CrossRefGoogle Scholar
  29. 29.
    L.C. Wu, X.M. Lin, Y. Huang, J. Li, J. Alloys Compd. 706, 156 (2017)CrossRefGoogle Scholar
  30. 30.
    Z. Yang, X. Zhang, D. Yang, B. Yang, X. Chao, L. Wei, J. Am. Ceram. Soc. 99, 2055 (2016)CrossRefGoogle Scholar
  31. 31.
    Z.M. Geng, K. Li, D. Shi, L. Zhang, X. Shi, J. Mater. Sci.: Mater. Electron. 26, 6769 (2015)Google Scholar
  32. 32.
    Z.M. Geng, L. Kun, D.L. Shi, X.Y. Shi, H.T. Huang, J. Inorg. Mater. 29, 1265 (2014)CrossRefGoogle Scholar
  33. 33.
    P. Yongsiri, S. Eitssayeam, U. Inthata, G. Rujijanagul, S. Sirisoonthorn, T. Tunkasiri, Ferroelectrics 416, 144 (2011)CrossRefGoogle Scholar
  34. 34.
    X.S. Zhang, D. Yang, Z. Yang, X.M. Zhao, Q.Z. Chai, X.L. Chao, L.L. Wei, Z.P. Yang, Ceram. Int. 42, 17963 (2016)CrossRefGoogle Scholar
  35. 35.
    Q.Z. Chai, D. Yang, X.M. Zhao, X. Chao, Z.P. Yang, J. Am. Ceram. Soc. (2018). Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Qi Jin
    • 1
  • Minhong Jiang
    • 1
    Email author
  • Shengnan Han
    • 1
  • Yafei Yan
    • 1
  1. 1.School of Materials Science and Engineering, Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations