Comparative study on dynamic thermal-dielectric properties of epoxy composites with Al and Ni particles

  • Li Xu
  • Wenying ZhouEmail author
  • Ying Gong
  • Yujia Kou
  • Zijun Wang
  • Fuxin Chen


Dynamic thermal-dielectric behaviors of the aluminum (Al) and nickel (Ni)/epoxy composites were investigated by means of broadband dielectric spectroscopy measurements at the temperature of − 20 to 200 °C and in the frequency range of 1–107 Hz. Results indicate that the dielectric permittivity, loss and electric conductivity of the two composites increased with temperature and exhibited a clear abrupt rise around the glass transition temperature (Tg) due to the occurrence of α-relaxation relating to the mobility of epoxy chain segments. The transition behavior in electrical properties is almost identical for the two composites: insulator below Tg and semi-conductor above Tg. The large increase in dielectric permittivity, loss and conductivity with temperature above Tg can be ascribed to the formation of direct current conduction of thermal-activated charge carriers resulting from the matrix. Compared with Ni, the core–shell structured Al endows epoxy much lower dielectric loss and conductivity owing to the presence of nanoscale insulating alumina shell between Al core and matrix, which serves as an interlayer between the Al cores, and prevents them from direct contacting with each other, thereby leading to highly suppressed loss and conductivity.



The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (51577154), the Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology (KF20151111), Shaanxi Provincial Natural Science Foundation, China (No. 2016JM5014). And Wenying Zhou acknowledges the fellowship provided by the China Scholarship Council (CSC).


  1. 1.
    İ. Taşçıoğlu, Ö.T. Özmen, H.M. Şağban, E. Yağlıoğlu, Ş. Altındal, J. Electron. Mater. 46, 2379 (2017)CrossRefGoogle Scholar
  2. 2.
    B. Li, P.I. Xidas, K.S. Triantafyllidis, E. Manias, Appl. Phys. Lett. 111, 082906 (2017)CrossRefGoogle Scholar
  3. 3.
    Y.F. Feng, H.H. Gong, Y.C. Xie, X.Y. Wei, L.J. Yang, Z.C. Zhang, J. Appl. Phys. 117, 094104 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Yang, H.L. Sun, B.P. Zhu, Z.Y. Wang, J.H. Wei, R. Xiong, J. Shi, Z.Y. Liu, Q.Q. Lei, Appl. Phys. Lett. 106, 012902 (2015)CrossRefGoogle Scholar
  5. 5.
    Q.M. Zhang, H.F. Li, P. Martin, F. Xia, Z.Y. Cheng, H.S. Xu, C. Huang, Nature 419, 284 (2002)CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, Y. Wang, Y. Deng, M. Li, J.B. Bai, ACS Appl. Mater. Interfaces 4, 65 (2012)CrossRefGoogle Scholar
  7. 7.
    Z.M. Dang, S.H. Yao, J.K. Yuan, J.B. Bai, J. Phys. Chem. C 114, 13204 (2010)CrossRefGoogle Scholar
  8. 8.
    B. Li, C.I. Camilli, P.I. Xidas, K.S. Triantafyllidis, E. Manias, MRS Adv 2(6), 363–368 (2017)CrossRefGoogle Scholar
  9. 9.
    W.Y. Zhou, Y. Gong, L.T. Tu, L. Xu, W. Zhao, J.T. Cai, Y.T. Zhang, A.N. Zhou, J. Alloys Compd. 693, 1 (2017)CrossRefGoogle Scholar
  10. 10.
    A. Ameli, M. Nofar, C.B. Park, P. Pötschke, G. Rizvi, Carbon 71, 206 (2014)CrossRefGoogle Scholar
  11. 11.
    W.S. Tong, Y.H. Zhang, Q. Zhang, X.L. Luan, Y. Duan, S.F. Pan, F.Z. Lv, Q. An, Carbon 94, 590 (2015)CrossRefGoogle Scholar
  12. 12.
    S.L. Zhong, Z.M. Dang, W.Y. Zhou, H.W. Cai, Nanodielectrics 1, 41 (2018)CrossRefGoogle Scholar
  13. 13.
    X.Y. Huang, C. Kim, P.K. Jiang, Y. Yin, Z. Li, J. Appl. Phys. 105, 014105 (2009)CrossRefGoogle Scholar
  14. 14.
    X.L. Zeng, L.B. Deng, Y.M. Yao, R. Sun, J.B. Xu, C.P. Wong, J. Mater. Chem. C 4, 6037 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Araby, I. Zaman, Q. Meng, N. Kawashima, A. Michelmore, H.C. Kuan, P. Majewski, J. Ma, L. Zhang, Nanotechnology 24, 165601 (2013)CrossRefGoogle Scholar
  16. 16.
    R. Qian, J.H. Yu, C. Wu, X. Zhai, P.K. Jiang, RSC Adv. 3, 17373 (2013)CrossRefGoogle Scholar
  17. 17.
    Z.M. Dang, S.S. You, J.W. Zha, H.T. Song, S.T. Li, Phys. Status Solidi 207, 739 (2010)CrossRefGoogle Scholar
  18. 18.
    Y.C. Zhou, H. Wang, F. Xiang, H. Zhang, K. Yu, L. Chen, Appl. Phys. Lett. 98, 182906 (2011)CrossRefGoogle Scholar
  19. 19.
    X.Y. Huang, P.K. Jiang, Adv. Mater. 27, 546 (2015)CrossRefGoogle Scholar
  20. 20.
    Z.M. Dang, Y.H. Lin, C.W. Nan, Adv. Mater. 15, 1625 (2003)CrossRefGoogle Scholar
  21. 21.
    W.H. Yang, S.H. Yu, R. Sun, S.M. Ke, H.T. Huang, R.X. Du, J. Phys. D 44, 475305 (2012)CrossRefGoogle Scholar
  22. 22.
    H.P. Xu, Z.M. Dang, N.C. Bing, Y.H. Wu, D.D. Yang, J. Appl. Phys. 107, 034105 (2010)CrossRefGoogle Scholar
  23. 23.
    M. Panda, V. Srinivas, A.K. Thakur, Appl. Phys. Lett. 92, 132905 (2008)CrossRefGoogle Scholar
  24. 24.
    X. Kuang, Z. Liu, H. Zhu, J.M.S. Zheng, Y.T. Zheng, J.W. Zha, Y. Yang, M.Z. Dang, Nano Energy 48, 144 (2018)CrossRefGoogle Scholar
  25. 25.
    Y.C. Zhou, Y.Y. Bai, K. Yu, Y. Kang, H. Wang, Appl. Phys. Lett. 102, 252903 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Sun, Q.Z. Xue, Q.K. Guo, Y.H. Tao, W. Xing, Compos. A 67, 252 (2014)CrossRefGoogle Scholar
  27. 27.
    W.Y. Zhou, J. Zuo, W.E. Ren, Compos. A 43, 658 (2012)CrossRefGoogle Scholar
  28. 28.
    T. Han, L.L. Peng, S.X. Cao, D.C. Zhu, M.J. Tu, J. Zhang, Rare Metal Mat. Eng 43, 2311 (2014)CrossRefGoogle Scholar
  29. 29.
    H.P. Xu, H.Q. Xie, D.D. Yang, Y.H. Wu, J.R. Wang, J. Appl. Polym. Sci. 122, 3466 (2011)CrossRefGoogle Scholar
  30. 30.
    Y. Gong, W.Y. Zhou, X.Z. Sui, Y.J. Kou, L. Xu, Y.E. Duan, F.X. Chen, Y. Li, X.R. Liu, H.W. Cai, Q.G. Chen, Z.M. Dang, Polym. Eng. Sci. (2018). Google Scholar
  31. 31.
    S.M. Lebedev, O.S. Gefle, S.N. Tkachenko, J. Electrostat. 68, 122 (2010)CrossRefGoogle Scholar
  32. 32.
    Y. Gong, W.Y. Zhou, Y.J. Kou, L. Xu, H.J. Wu, W. Zhao, High Voltage 2, 172 (2017)CrossRefGoogle Scholar
  33. 33.
    W.P. Li, L.J. Yu, Y.J. Zhu, D.Y. Hua, J. Phys. Chem. C 114, 14004 (2010)CrossRefGoogle Scholar
  34. 34.
    A. Jouili, S. Mansouri, A.A. Al-Ghamdi, L.E. Mir, W.A. Farooq, F. Yakuphanoglu, J. Electron. Mater. 46, 2221 (2017)CrossRefGoogle Scholar
  35. 35.
    Z.J. Wang, W.Y. Zhou, X.Z. Sui, L.N. Dong, H.W. Cai, J. Zuo, Q.G. Chen, J. Electron. Mater. 45, 3069 (2016)CrossRefGoogle Scholar
  36. 36.
    W.Y. Zhou, J. Mater. Sci. 46, 3883 (2011)CrossRefGoogle Scholar
  37. 37.
    Ç Bilkan, Y. Azizian-Kalandaragh, A. Şemsettin, R. Shokrani-Havigh, Phys. B 500, 154 (2016)CrossRefGoogle Scholar
  38. 38.
    A. Srivastava, K.K. Jana, P. Maiti, D. Kumar, O. Parkash, J. Eng. 2015, 1 (2015)CrossRefGoogle Scholar
  39. 39.
    Y.H. Li, J.J. Yuan, J. Xue, F.Y. Cai, F. Chen, Q. Fu, Compos. Sci. Technol. 118, 198 (2015)CrossRefGoogle Scholar
  40. 40.
    K. Prasad, K. Priyanka, K.P. Amarnath, A.R. Chandra, Kulkarni, J. Mater. Sci.: Mater. Electron. 25, 4856 (2014)Google Scholar
  41. 41.
    W.Y. Zhou, L. Xu, L.Y. Jiang, J.D. Peng, Y. Gong, X.R. Liu, H.W. Cai, G.H. Wang, Q.G. Chen, J. Alloys Compd. 710, 47 (2017)CrossRefGoogle Scholar
  42. 42.
    D.L. He, Y. Wang, X.Q. Chen, Y. Deng, Compos. A 93, 137 (2016)CrossRefGoogle Scholar
  43. 43.
    A.K. Jonscher, J. Phys. D 16, 2037 (1981)Google Scholar
  44. 44.
    K.L. Ngai, R. Casalini, C.M. Roland, Macromolecules 38, 4363 (2005)CrossRefGoogle Scholar
  45. 45.
    W.T. Wan, D.M. Yu, J. He, Y.C. Xie, L.B. Huang, J. Appl. Polym. Sci. 107, 1020 (2008)CrossRefGoogle Scholar
  46. 46.
    B.K. Singh, B. Kumar, Cryst. Res. Technol. 45, 1003 (2010)CrossRefGoogle Scholar
  47. 47.
    Z.J. Wang, W.Y. Zhou, L.N. Dong, X.Z. Sui, H.W. Cai, J. Zuo, Q.G. Chen, J. Alloys Compd. 682, 738 (2016)CrossRefGoogle Scholar
  48. 48.
    Z.J. Wang, W.Y. Zhou, L.N. Dong, H.W. Cai, J. Zuo, X.R. Liu, Q.G. Chen, Polym. Compos. 39, 887 (2018)CrossRefGoogle Scholar
  49. 49.
    L.Y. Xie, X.Y. Huang, C. Wu, P.K. Jiang, J. Mater. Chem. 21, 5897 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Li Xu
    • 1
    • 2
  • Wenying Zhou
    • 1
    • 2
    Email author
  • Ying Gong
    • 1
  • Yujia Kou
    • 1
  • Zijun Wang
    • 1
  • Fuxin Chen
    • 1
  1. 1.College of Chemistry and Chemical EngineeringXi’an University of Science & TechnologyXi’anPeople’s Republic of China
  2. 2.Key Laboratory of Engineering Dielectrics and Its Application, Ministry of EducationHarbin University of Science and TechnologyHarbinPeople’s Republic of China

Personalised recommendations