Optical properties of recent chalcogenide-alkali metal Se80Te8(NaCl)12 thin film

  • Y. M. Bakier
  • M. I. Abd-ElrahmanEmail author
  • A. A. Abu-Sehly
  • M. M. Hafiz


Recent chalcogenide-alkali metal Se80Te8(NaCl)12 semiconducting thin films of 750 nm thickness are deposited onto glass substrates by thermal evaporation method. The effect of the thermal annealing on structure and optical properties are investigated. The amorphous-to-crystalline phase transformation in the powdered sample is achieved by differential scanning calorimetry (DSC) heat treatment. The X-ray diffraction studies show that the as-prepared film is amorphous while the annealed films exhibit crystalline phases. The crystallite grain size decreases as the annealing temperature increases. The transmission spectra are measured in the wavelength range of the incident photons from 250 to 2500 nm. The films show highly transparence reaching about 90% in the visible and infrared regions. The refractive index of the films is calculated using the Swanepoel method based on the generation of the envelopes of the interference maxima and minima of the optical transmission spectrum. It progressively decreases with the incident wavelength representing the behavior of the normal dispersion of the film material. The effect of the annealing temperature on the refractive index is studied. The absorption mechanism of the films referred to indirect allowed transition. Optical band gap ranging from 1.60 to 1.45 eV is favorable for photovoltaics applications. With increasing the annealing temperature, both the optical band gap and the single-oscillator energy decrease while the energy of localized state increase.


  1. 1.
    D.E. Carlson, C.R. Wronski, Appl. Phys. Lett. 28, 671 (1976)CrossRefGoogle Scholar
  2. 2.
    J.H. Dessaur, H.E. Clarke, Xerography and Related Processed (Focal Press, London, 1965)Google Scholar
  3. 3.
    C. Vigreux, E. Barthelemy, L. Bastard, J.E. Broquin, M. Barillot, S. Menard, G. Parents, A. Pradel, Opt. Lett. 36, 2922 (2011)CrossRefGoogle Scholar
  4. 4.
    K. Granath, M. Bodegard, L. Stolt, Sol. Energy Mater. Sol. C 60, 279 (2000)CrossRefGoogle Scholar
  5. 5.
    D. Rudmann, D. Brémaud, A.F. da Cunha, G. Bilger, A. Strohm, M. Kaelin, H. Zogg, A.N. Tiwari, Thin Solid Films 480–481, 55 (2005)CrossRefGoogle Scholar
  6. 6.
    D.-Y. Chung, K.-S. Choi, L. Iordanidis, J.L. Schindler, P.M. Brazis, C.R. Kannewurf, B. Chen, S. Hu, C. Uher, M.G. Kanatzidis, Chem. Mater. 9, 3060 (1997)CrossRefGoogle Scholar
  7. 7.
    A.K. Koh, Phys. Status Solidi B 210, 3 (1999)Google Scholar
  8. 8.
    V.K. Jain, J. Shanker, Phys. Status Solidi B 114, 287 (1982)CrossRefGoogle Scholar
  9. 9.
    A. Melillou, B.R.K. Gupta, Czech. J. Phys. 41, 813 (1991)CrossRefGoogle Scholar
  10. 10.
    Y.A. El-Gendy, G.B. Sakr, J. Non-Cryst. Solids 357, 3226 (2011)CrossRefGoogle Scholar
  11. 11.
    H.-Y. Cheng, K.-F. Kao, C.-M. Lee, T.-S. Chin, Thin Solid Films 516, 5513 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Dongol, J. Sol. Egypt 25, 33 (2002)Google Scholar
  13. 13.
    M.I. Abd-Elrahman, A.A. Abu-Sehly, Y.M. Bakier, M.M. Hafiz, Spectrochim. Acta A 184, 243 (2017)CrossRefGoogle Scholar
  14. 14.
    M.I. Abd-Elrahman, R.M. Khafagy, N. Younis, M.M. Hafiz, Physica B 449, 155 (2014)CrossRefGoogle Scholar
  15. 15.
    A. Douglas, F. Skoog, A. James Holler, Timothy, Nieman, Principles of Instrumental Analysis 5 edn. (McGraw Hill, New York, 1998) pp. 805–808Google Scholar
  16. 16.
    J.A. Dean, The Analytical Chemistry Handbook, (McGraw Hill, New York, 1995) pp. 15.1–15.5Google Scholar
  17. 17.
    H.L. Ma, X.H. Zhang, J. Lucas, C.T. Moynihan, J. Non-Cryst. Solids 140, 209 (1992)CrossRefGoogle Scholar
  18. 18.
    M. Chen, K.A. Rubin, R.W. Barton, Appl. Phys. Lett. 49, 502 (1986)CrossRefGoogle Scholar
  19. 19.
    J. Bicerano, S.R. Ovshinsky, J. Non. Cryst. Solids 74, 75 (1985)CrossRefGoogle Scholar
  20. 20.
    S. Subramanian, D.P. Padiyan, Mater. Chem. Phys. 107, 392 (2008)CrossRefGoogle Scholar
  21. 21.
    D. Pathinerttam, A. Padiyan, K.R. Murali, Mater. Chem. Phys 78, 51 (2002)CrossRefGoogle Scholar
  22. 22.
    N. Tohge, T. Minami, M. Tanaka, J. Non-Cryst. Solids 59, 999 (1983)CrossRefGoogle Scholar
  23. 23.
    R. Swanepoel, J. Phys. E 16, 1214 (1983)CrossRefGoogle Scholar
  24. 24.
    P. Sharma, V. Sharma, S.C. Katyal, Chalcogenide Lett. 3, 10 (2006)Google Scholar
  25. 25.
    S. Wong, M. Deubel, F. Pérez-Willard, S. John, G.A. Ozin, M. Wegener, G. van Freymann, Adv. Mater. 18, 265 (2006)CrossRefGoogle Scholar
  26. 26.
    D. Freeman, S. Madden, B. Luther-Davies, Opt. Express 13, 3079–3086 (2005)CrossRefGoogle Scholar
  27. 27.
    S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)CrossRefGoogle Scholar
  28. 28.
    S.H. Wemple, Phys. Rev. B 7, 3767 (1973)CrossRefGoogle Scholar
  29. 29.
    F. Urbach, Phys. Rev. 92, 132 (1953)CrossRefGoogle Scholar
  30. 30.
    J. Olley, Solid State Commun. 13, 1437 (1973)CrossRefGoogle Scholar
  31. 31.
    J. Tauk, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)CrossRefGoogle Scholar
  32. 32.
    S. Chaudhuri, S.K. Biswas, A. Choudhury, K. Goswami, J. Non-Cryst. Solids 54, 179 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Y. M. Bakier
    • 1
  • M. I. Abd-Elrahman
    • 1
    Email author
  • A. A. Abu-Sehly
    • 1
  • M. M. Hafiz
    • 1
  1. 1.Physics Department, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations