Fabrication, characterization and hydrogen gas sensing performance of nanostructured V2O5 thin films prepared by plasma focus method

  • Naser PanahiEmail author
  • Marzieh Shirazi
  • Mohammad Taghi Hosseinnejad


Nanocrystalline V2O5 thin films were deposited on glass substrates at room temperature using a low energy (1.3 kJ) plasma focus device. The argon:oxygen gas mixture (in 7:3 ratio) was utilized as a working gas and metallic vanadium was used as the anode tip material. The V2O5 thin films were synthesized with different number of shots (10, 20 and 30 shots), at 0° angular position with respect to the anode axis and at same axial position from the tip of anode (10 cm). The structural properties and phase composition of the thin films were studied by means of X-ray diffraction (XRD) and Raman scattering analysis. The results obtained from scanning electron microscopy (SEM), and atomic force microscopy (AFM) analyzes revealed that the size of nanoparticles/agglomerates and surface roughness of V2O5 thin films strongly depend on number of shots. The variation in the gas response of the V2O5 thin films for 1000 ppm concentration of hydrogen gas at different operating temperatures (150–350 °C) revealed an optimal operating temperature of 275 °C. Moreover, among all the V2O5 thin films studied, the sample deposited with ten shots showed the maximum gas response to various H2 concentrations at optimal operating temperature.



The authors wish to acknowledge the Bandar Abbas Branch, Islamic Azad University for financial support and cooperation in implementing this project.


  1. 1.
    I. Mjejri, A. Rougier, M. Gaudon, Low-cost and facile synthesis of the vanadium oxides V2O3, VO2, and V2O5 and their magnetic, thermochromic and electrochromic properties. Inorg. Chem. 56, 1734–1741 (2017)CrossRefGoogle Scholar
  2. 2.
    Z. Wan, R.B. Darling, M.P. Anantram, Programmable diode/resistor-like behavior of nanostructured vanadium pentoxide xerogel thin film. Phys. Chem. Chem. Phys. 17, 30248–30254 (2015)CrossRefGoogle Scholar
  3. 3.
    A. Dhawan, Y. Sharma, L. Brickson, J.F. Muth, Incorporation of vanadium oxide films in optical fibers for temperature sensing and optical switching applications. Opt. Mater. Express 4, 1128–1139 (2014)CrossRefGoogle Scholar
  4. 4.
    C.F. Armera, M. Lubkeb, M.V. Reddyd, J.A. Darrc, X. Lib, A. Lowe, Phase change effect on the structural and electrochemical behaviour of pure and doped vanadium pentoxide as positive electrodes for lithium ion batteries. J. Power Sources 353, 40–50 (2017)CrossRefGoogle Scholar
  5. 5.
    S. Beke, A review of the growth of V2O5 films from 1885 to 2010. Thin Solid Films 519, 1761–1771 (2011)CrossRefGoogle Scholar
  6. 6.
    V. Modafferi, G. Panzera, A. Donato, P.L. Antonucci, C. Cannilla, N. Donato, D. Spadaro, G. Neri, Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers, Sens. Actuators B 163, 61–68 (2012).CrossRefGoogle Scholar
  7. 7.
    A.A. Mane, V.V. Ganbavle, M.A. Gaikwad, S.S. Nikam, K.Y. Rajpure, A.V. Moholkar, Physicochemical properties of sprayed V2O5 thin films: effect of substrate temperature. J. Anal. Appl. Pyrol. 115, 57–65 (2015)CrossRefGoogle Scholar
  8. 8.
    W. Yan, M. Hu, D. Wang, C. Li, Room temperature gas sensing properties of porous silicon/V2O5 nanorods composite. Appl. Surf. Sci. 346, 216–222 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Huotari, R. Bjorklund, J. Lappalainen, A. Lloyd Spetz, Pulsed laser deposited nanostructured vanadium oxide thin films characterized as ammonia sensors, Sens. Actuators B 217, 22–29 (2015).CrossRefGoogle Scholar
  10. 10.
    R. Suresh, K. Giribabu, R. Manigandan, S. Praveen Kumar, S. Munusamy, S. Muthamizh, A. Stephen, V. Narayanan, New electrochemical sensor based on Ni-doped V2O5 nanoplates modified glassy carbon electrode for selective determination of dopamine at nanomolar level, Sens. Actuators B 202, 440–447 (2014).CrossRefGoogle Scholar
  11. 11.
    J.W. Mather, Dense plasma focus. Methods Exp. Phys. 9, 187–249 (1971)CrossRefGoogle Scholar
  12. 12.
    S. Sh. Al-Hawat, Saloum, Characterization of a 2.8 kJ small plasma focus using a five phase radiative model. Contrib. Plasma Phys. 49, 4–14 (2009)CrossRefGoogle Scholar
  13. 13.
    M. Sh. Al-Hawat, S. Akel, H. Lee, Saw, Model parameters versus gas pressure in two different plasma focus devices operated in argon and neon. J. Fusion Energy 31, 13–20 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Sh. Al-Hawat, S. Akel, Shaaban, X-ray intensity measurements in 2.8 kJ plasma focus device operated with argon using a five channel diode spectrometer. J. Fusion Energy 34, 163–171 (2015)CrossRefGoogle Scholar
  15. 15.
    Z.A. Umar, R.S. Rawat, R. Ahmad, Z. Chen, Z. Zhang, J. Siddiqui, A. Hussnain, T. Hussain, M.A. Baig, Structural, compositional and hardness properties of hydrogenated amorphous carbon nitride thin films synthesized by dense plasma focus device. Surf. Interface Anal. 49, 548–553 (2017)CrossRefGoogle Scholar
  16. 16.
    S.K. Ngoi, S.L. Yap, B.T. Goh, R. Ritikos, S.A. Rahman, C.S. Wong, Formation of nano-crystalline phase in hydrogenated amorphous silicon thin film by plasma focus ion beam irradiation. J. Fusion Energy 31, 96–103 (2012)CrossRefGoogle Scholar
  17. 17.
    I.A. Khan, R.S. Rawat, R. Ahmad, M.A.K. Shahid, Deposition of alumina stabilized zirconia at room temperature by plasma focus device. Appl. Surf. Sci. 288, 304–312 (2014)CrossRefGoogle Scholar
  18. 18.
    Z.A. Umar, R.S. Rawat, K.S. Tan, A.K. Kumar, R. Ahmad, T. Hussain, C. Kloc, Z. Chen, L. Shen, Z. Zhang, Hard TiCx/SiC/a-C:H nanocomposite thin films using pulsed high energy density plasma focus device. Nucl. Instrum. Methods Phys. Res. B 301, 53–61 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Ahmad, Sh Al-Hawat, M. Akel, O. Mrad, Characterization of bismuth nanospheres deposited by plasma focus device. J. Appl. Phys. 117, 063301 (2015)CrossRefGoogle Scholar
  20. 20.
    M.J. Inestrosa-Izurieta, P. Jauregui, L. Soto, Deposition of materials using a plasma focus of tens of joules. J. Phys. 720, 012045 (2016)Google Scholar
  21. 21.
    W. Kies, G. Decker, U. Berntien, Yu..V. Sidelnikov, D.A. Glushkov, K.N. Koshelev, D.M. Simanovskii, S.V. Bobashev, Pinch modes produced in the SPEED2 plasma focus. Plasma Sources Sci. Technol. 9, 279–287 (2000)CrossRefGoogle Scholar
  22. 22.
    R.S. Rawat, High energy density pulsed plasmas in plasma focus: novel plasma processing tool for nanophase hard magnetic material synthesis. Nanosci. Nanotechnol. Lett. 4, 251–274 (2012)CrossRefGoogle Scholar
  23. 23.
    B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, vol. 3 (Prentice Hall, New-Jersey, 2001)Google Scholar
  24. 24.
    J.P. Schreckenbach, K. Witke, D. Butte, G. Marx, Characterization of thin metastable vanadium oxide films by Raman spectroscopy. Fresenius J. Appl. Chem. 363, 211–214 (1999)CrossRefGoogle Scholar
  25. 25.
    S.H. Lee, H.M. Cheong, M.J. Seong, P. Liu, C.E. Tracy, A. Mascarenhas, Microstructure study of amorphous vanadium oxide thin films using Raman spectroscopy. J. Appl. Phys. 92, 1893–1897 (2002)CrossRefGoogle Scholar
  26. 26.
    Q. Su, Q. Liu, M.L. Ma, Y.P. Guo, Y.Y. Wang, Raman spectroscopic characterization of the microstructure of V2O5 films. J. Solid State Electrochem. 12, 919–923 (2008)CrossRefGoogle Scholar
  27. 27.
    A.Gornstein,A.Khelfa,J.P.Guesdon,C.Julien, Effect of the crystallinity of V6O13 films on the electrochemical behaviour of lithium micro batteries, Mater. Res. Soc. Symp. Proc. 369,649–655 (1995).Google Scholar
  28. 28.
    C. Julien, G.A. Nazri, O. Bergstrom, Ramanz scattering studies of microcrystalline V6O13. Phys. Status Solidi B 201, 319–326 (1997)CrossRefGoogle Scholar
  29. 29.
    G.R. Jafari, M.R. Rahimi Tabar, A. Irajizad, G. Kavei, Etched glass surfaces, atomic force microscopy and stochastic analysis. Physica A 375, 239–246 (2007)CrossRefGoogle Scholar
  30. 30.
    M. Takata, D. Tsubone, H. Yanagida, Dependence of electrical conductivity of ZnO on degree of sintering. J. Am. Ceram. Soc. 59, 4–8 (1976)CrossRefGoogle Scholar
  31. 31.
    A. Md. Shahabuddin, M. Umar, V. Tomar, Gupta, Custom designed metal anchored SnO2 sensor for H2 detection. Int. J. Hydrogen Energy 42, 4597–4609 (2017)CrossRefGoogle Scholar
  32. 32.
    Z.Q. Zheng, L.F. Zhu, B. Wang, In2O3 nanotower hydrogen gas sensors based on both Schottky junction and thermoelectronic emission. Nanoscale Res. Lett. 10, 293 (2015)CrossRefGoogle Scholar
  33. 33.
    C. Wang, R.Z. Sun, X. Li, Y.F. Sun, P. Sun, F.M. Liu, G.Y. Lu, Hierarchical flower-like WO3 nanostructures and their gas sensing properties. Sens. Actuators B 204, 224–230 (2014)CrossRefGoogle Scholar
  34. 34.
    A. Rothschild, Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J. Appl. Phys. 95, 6374–6380 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Naser Panahi
    • 1
    Email author
  • Marzieh Shirazi
    • 2
  • Mohammad Taghi Hosseinnejad
    • 2
  1. 1.Department of Physics, Bandar Abbas BranchIslamic Azad UniversityBandar AbbasIran
  2. 2.Young Researchers and Elites Club, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations