Advertisement

Effect of low energy (keV) ion irradiation on structural, optical and morphological properties of SnO2–TiO2 nanocomposite thin films

  • Vikas Kumar
  • M. K. Jaiswal
  • Rashi Gupta
  • Jagjeevan Ram
  • Indra Sulania
  • Sunil Ojha
  • Xin Sun
  • N. Koratkar
  • Rajesh Kumar
Article
  • 72 Downloads

Abstract

RF Sputtering deposition technique was used to deposit the thin films of nanocomposite oxides as SnO2–TiO2 on Si and ITO coated glass substrate. As a target, SnO2–TiO2 was taken according to their molecular weight percent ratio of 3:1. Material modification has been induced by low energy ion beam with varying ion fluence from 5E13 to 5E16 ions/cm2. Glancing Angle X-ray Diffraction technique was used to study crystallite size, phase transformation and stability of different planes of pristine and irradiated thin films. The important peaks observed in XRD pattern were at angles 26.95°, 34.27°, 37.60°, 50.88° and 52.46°. The grain size distribution and surface morphology were studied by Atomic Force Microscopy technique in tapping mode. The results show that the grain size varies with ion fluence. Raman analysis revealed that the sharp peak at the frequency of 520 cm−1 ascribed to the T2g mode was observed for the pristine and lowest fluence irradiated film deposited on Si substrate. With increasing ion fluence, an opposite trend in SnO2 B2g peak was observed at nearly 775 cm−1 and the also peak bump was observed as a function of ion beam fluence. The optical band gap decreases from 3.90 to 3.63 eV due to the generation of ions and free radicals in valance band by varying ion fluence which was observed by UV/Visible Spectroscopy. The film thickness was determined to be 220 nm using Rutherford Backscattering Spectrometry. It also confirmed the absence of any impurities in the pristine and irradiated thin films. The material properties were mainly modified by the point defects and grain size growth arising due to nuclear energy loss.

Notes

Acknowledgements

One of the authors, Dr. Rajesh Kumar is grateful to Inter University Accelerator Center (IUAC), New Delhi, India for providing financial assistance (Ref: IUAC/XIII.3A/59319) and the University Grants Commission, Govt. of India, New Delhi, India, as Raman Post Doctoral Fellow (F. No. 5-150/2016(IC) for carrying out this research work.

References

  1. 1.
    M. Morimitsu, Y. Ozaki, S. Suzuki, M. Matsunaga, Sens. Actuators B 67, 184 (2000)CrossRefGoogle Scholar
  2. 2.
    X. Pan, L. Fu, J. Appl. Phys. 89, 6048 (2001)CrossRefGoogle Scholar
  3. 3.
    M.K. Jaiswal, A. Kumar, D. Kanjilal, T. Mohanty, Appl. Surf. Sci. 263, 586 (2012)CrossRefGoogle Scholar
  4. 4.
    K.G. Godinho, A. Walsh, G.W. Watson, J. Phys. Chem. 113, 439 (2008)Google Scholar
  5. 5.
    Ç. Kılıç, A. Zunger, Phys. Rev. Lett. 88, 095501 (2002)CrossRefGoogle Scholar
  6. 6.
    D.H. Kim, W.-S. Kim, S.B. Lee, S.-H. Hong, Sens. Actuators B 147, 653 (2010)CrossRefGoogle Scholar
  7. 7.
    A. Kumar, M. Jaiswal, D. Kanjilal, R.K. Joshi, T. Mohanty, Appl. Phys. Lett. 99, 013109 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Ansari, P. Boroojerdian, S. Sainkar, R. Karekar, R. Aiyer, S. Kulkarni, Thin solid films 295, 271 (1997)CrossRefGoogle Scholar
  9. 9.
    S. Chappel, A. Zaban, Sol. Energy Mater. Sol. Cells 71, 141 (2002)CrossRefGoogle Scholar
  10. 10.
    S. Sankar, K. Gopchandran, Cryst. Res. Technol. 44, 989 (2009)CrossRefGoogle Scholar
  11. 11.
    W. Sun, X. Sun, T. Peng, Y. Liu, H. Zhu, S. Guo, X. Zhao, J. Power Sources 201, 402 (2012)CrossRefGoogle Scholar
  12. 12.
    F. Edelman, H. Hahn, S. Seifried, C. Alof, H. Hoche, A. Balogh, P. Werner, K. Zakrzewska, M. Radecka, P. Pasierb, Mater. Sci. Eng. B 69, 386 (2000)CrossRefGoogle Scholar
  13. 13.
    J. Li, L. Hu, J. Liu, L. Wang, T.J. Marks, G. Grüner, Appl. Phys. Lett. 93, 310 (2008)Google Scholar
  14. 14.
    M.K. Jaiswal, D. Kanjilal, R. Kumar, Nucl. Instrum. Methods Phys. Res. B 315, 179 (2013)CrossRefGoogle Scholar
  15. 15.
    A. Mayabadi, A. Pawbake, S. Rondiya, A. Rokade, R. Waykar, R. Kulkarni, A. Jadhavar, M. Kamble, B. Gabhale, V. Waman, Thin Solid Films 589, 493 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Yu, X. Zhao, Q. Zhao, Thin solid films 379, 7 (2000)CrossRefGoogle Scholar
  17. 17.
    J. Yu, X. Zhao, Q. Zhao, Mater. Chem. Phys. 69, 25 (2001)CrossRefGoogle Scholar
  18. 18.
    C. Garzella, E. Comini, E. Tempesti, C. Frigeri, G. Sberveglieri, Sens. Actuators B 68, 189 (2000)CrossRefGoogle Scholar
  19. 19.
    K. Abhirami, P. Matheswaran, B. Gokul, R. Sathyamoorthy, D. Kanjilal, K. Asokan, Vacuum 90, 39 (2013)CrossRefGoogle Scholar
  20. 20.
    X. Yu, Y. Li, W. Wlodarski, S. Kandasamy, K. Kalantar-Zadeh, Sens. Actuators B 130, 25 (2008)CrossRefGoogle Scholar
  21. 21.
    S.-H. Jeong, J.-K. Kim, B.-S. Kim, S.-H. Shim, B.-T. Lee, Vacuum 76, 507 (2004)CrossRefGoogle Scholar
  22. 22.
    N. Khemasiri, S. Jessadaluk, C. Chananonnawathorn, S. Vuttivong, T. Lertvanithphol, M. Horprathum, P. Eiamchai, V. Patthanasettakul, A. Klamchuen, A. Pankiew, Surf. Coat. Technol. 306, 346 (2016)CrossRefGoogle Scholar
  23. 23.
    V.B. Raj, H. Singh, A. Nimal, M. Sharma, V. Gupta, Sens. Actuators B 178, 636 (2013)CrossRefGoogle Scholar
  24. 24.
    M. Pavlovič, I. Strašík, Nucl. Instrum. Methods Phys. Res. B 257, 601 (2007)CrossRefGoogle Scholar
  25. 25.
    R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, Nucl. Instrum. Methods Phys. Res. B 310, 75 (2013)CrossRefGoogle Scholar
  26. 26.
    J.F. Ziegler, Nucl. Instrum. Methods Phys. Res. B 219, 1027 (2004)CrossRefGoogle Scholar
  27. 27.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)CrossRefGoogle Scholar
  28. 28.
    M. Toulemonde, C. Trautmann, E. Balanzat, K. Hjort, A. Weidinger, Nucl. Instrum. Methods Phys. Res. B 216, 1 (2004)CrossRefGoogle Scholar
  29. 29.
    M. Caron, H. Rothard, M. Toulemonde, B. Gervais, M. Beuve, Nucl. Instrum. Methods Phys. Res. B 245, 36 (2006)CrossRefGoogle Scholar
  30. 30.
    S. Sorel, P.E. Lyons, S. De, J.C. Dickerson, J.N. Coleman, Nanotechnology 23, 185201 (2012)CrossRefGoogle Scholar
  31. 31.
    A. Dakhel, Mater. Chem. Phys. 130, 398 (2011)CrossRefGoogle Scholar
  32. 32.
    S. Rani, N. Puri, S.C. Roy, M. Bhatnagar, D. Kanjilal, Nucl. Instrum. Methods Phys. Res. B 266, 1987 (2008)CrossRefGoogle Scholar
  33. 33.
    S.-H. Hong, S. Åsbrink, Acta Crystallogr. B 38, 2570 (1982)CrossRefGoogle Scholar
  34. 34.
    M. Toulemonde, C. Dufour, E. Paumier, Phys. Rev. B 46, 14362 (1992)CrossRefGoogle Scholar
  35. 35.
    R. Sivakumar, C. Sanjeeviraja, M. Jayachandran, R. Gopalakrishnan, S. Sarangi, D. Paramanik, T. Som, J. Appl. Phys. 101, 034913 (2007)CrossRefGoogle Scholar
  36. 36.
    Z. Wen, L. Tian-Mo, Physica B 405, 1345 (2010)CrossRefGoogle Scholar
  37. 37.
    A.F. Shojaei, A. Shams-Nateri, M. Ghomashpasand, Superlatt. Microstruct. 88, 211 (2015)CrossRefGoogle Scholar
  38. 38.
    P. Mallick, R. Biswal, C. Rath, D. Agarwal, A. Tripathi, D. Avasthi, D. Kanjilal, P. Satyam, N. Mishra, Nucl. Instrum. Methods Phys. Res. B 268, 470 (2010)CrossRefGoogle Scholar
  39. 39.
    M.K. Jaiswal, D. Kanjilal, R. Kumar, Nucl. Instrum. Methods Phys. Res. B 314, 170 (2013)CrossRefGoogle Scholar
  40. 40.
    E. Bringa, R. Johnson, Phys. Rev. Lett. 88, 165501 (2002)CrossRefGoogle Scholar
  41. 41.
    L. Shi, Y. Xu, Q. Li, Nanoscale 2, 2104 (2010)CrossRefGoogle Scholar
  42. 42.
    F. Tian, Y. Zhang, J. Zhang, C. Pan, J. Phys. Chem. C 116, 7515 (2012)CrossRefGoogle Scholar
  43. 43.
    L. Avakyants, L. Gerasimov, V. Gorelik, N. Manja, E. Obraztsova, Y.I. Plotnikov, J. Mol. Struct. 267, 177 (1992)CrossRefGoogle Scholar
  44. 44.
    A. Perriot, D. Vandembroucq, E. Barthel, V. Martinez, L. Grosvalet, C. Martinet, B. Champagnon, J. Am. Ceram. Soc. 89, 596 (2006)CrossRefGoogle Scholar
  45. 45.
    T. Kumar, Mohanty, J. Phys. Chem. C 118, 7130 (2014)CrossRefGoogle Scholar
  46. 46.
    R. Kumaravel, V. Gokulakrishnan, K. Ramamurthi, I. Sulania, D. Kanjilal, K. Asokan, D. Avasthi, Nucl. Instrum. Methods Phys. Res. B 268, 2391 (2010)CrossRefGoogle Scholar
  47. 47.
    R. Ramola, S. Chandra, A. Negi, J. Rana, S. Annapoorni, R. Sonkawade, P. Kulriya, A. Srivastava, Physica B 404, 26 (2009)CrossRefGoogle Scholar
  48. 48.
    D. Mohanta, N. Mishra, A. Choudhury, Mater. Lett. 58, 3694 (2004)CrossRefGoogle Scholar
  49. 49.
    Y.S. Chaudhary, S.A. Khan, R. Shrivastav, V.R. Satsangi, S. Prakash, D. Avasthi, S. Dass, Nucl. Instrum. Methods Phys. Res. B 225, 291 (2004)CrossRefGoogle Scholar
  50. 50.
    S. Chowdhury, D. Mohanta, G. Ahmed, S. Dolui, D. Avasthi, A. Choudhury, J. Lumin. 114, 95 (2005)CrossRefGoogle Scholar
  51. 51.
    S. Singh, S. Prasher, Nucl. Instrum. Methods Phys. Res. B 222, 518 (2004)CrossRefGoogle Scholar
  52. 52.
    B. Astinchap, R. Moradian, K. Gholami, Mater. Sci. Semicond. Process. 63, 169 (2017)CrossRefGoogle Scholar
  53. 53.
    M. Rana, F. Singh, K. Joshi, S. Negi, R. Ramola, Thin Solid Films 616, 34 (2016)CrossRefGoogle Scholar
  54. 54.
    L.R. Doolittle, Nucl. Instrum. Methods Phys. Res. B 9, 344 (1985)CrossRefGoogle Scholar
  55. 55.
    R.K. Pandey, M. Kumar, U.B. Singh, S.A. Khan, D. Avasthi, A.C. Pandey, Nucl. Instrum. Methods Phys. Res B 314, 21 (2013)CrossRefGoogle Scholar
  56. 56.
    S.K. Gautam, A. Das, S. Ojha, D. Shukla, D. Phase, F. Singh, PCCP 18, 3618 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vikas Kumar
    • 1
  • M. K. Jaiswal
    • 2
  • Rashi Gupta
    • 1
  • Jagjeevan Ram
    • 1
  • Indra Sulania
    • 3
  • Sunil Ojha
    • 3
  • Xin Sun
    • 4
  • N. Koratkar
    • 5
  • Rajesh Kumar
    • 1
  1. 1.University School of Basic and Applied SciencesGuru Gobind Singh Indraprastha UniversityNew DelhiIndia
  2. 2.Department of PhysicsShaheed Rajguru College of Applied Sciences for Women (University of Delhi)New DelhiIndia
  3. 3.Inter University Accelerator CentreNew DelhiIndia
  4. 4.Center for Materials, Devices and Integrated Systems (CMDIS)Rensselaer Polytechnic InstituteTroyUSA
  5. 5.Department of Mechanical, Aerospace and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations