The effects of composition deviations on the microstructure and thermoelectric performance of Ca3Co4O9 thin film

  • Li Zhang
  • Thiam Teck TanEmail author
  • Sean Li


This work investigated composition deviations in Ca3Co4O9 (CCO) films during rf-sputtering process and their effects on the properties of post-annealed CCO films. The negative oxygen ions produced during sputtering resulted in a great reduction in deposition rate and preferential re-sputtering of calcium atoms from the substrate due to their lighter weight compared to cobalt. Experiment results showed that the single phase CCO film exhibited the lowest electrical resistivity of ~ 4 mΩ cm at room temperature and a high power factor of ~ 1.1 mW/mK2 at 973 K. Compared with the single phase CCO sample, the resistivity of the Co-rich sample increased slightly and the Seebeck coefficient increased by ~ 20% at high temperature, thereby leading to a high power factor. The upturn of the Seebeck coefficient behaviours in Co-rich samples from 700 K is most likely associated with the strain induced by the mismatch of thermal expansion coefficients (CTE) between CCO and Co3O4 grains.



This project is supported by Australian Research Council (Grant Nos. DP0988687, DP110102662, FT100100956 and LP120200289) and Foundation of Shaanxi University of Science & Technology (2017GBJ-03).


  1. 1.
    Y. Zheng, Q. Zhang, X. Su, H. Xie, S. Shu, T. Chen, G. Tan, Y. Yan, X. Tang, C. Uher, G.J. Snyder, Mechanically robust BiSbTe alloys with superior thermoelectric performance: a case study of stable hierarchical nanostructured thermoelectric materials. Adv. Energy Mater. 5, 1401391 (2015)CrossRefGoogle Scholar
  2. 2.
    L. Hu, H. Wu, T. Zhu, C. Fu, J. He, P. Ying, X. Zhao, Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv. Energy Mater. 5, 1500411 (2015)CrossRefGoogle Scholar
  3. 3.
    G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)CrossRefGoogle Scholar
  4. 4.
    M. Shikano, R. Funahashi, Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett. 82, 1851–1853 (2003)CrossRefGoogle Scholar
  5. 5.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001)CrossRefGoogle Scholar
  6. 6.
    R.F. Klie, Q. Qiao, T. Paulauskas, A. Gulec, A. Rebola, S. Öğüt, M.P. Prange, J.C. Idrobo, S.T. Pantelides, S. Kolesnik, B. Dabrowski, M. Ozdemir, C. Boyraz, D. Mazumdar, A. Gupta, Observations of Co4+ in a higher spin state and the increase in the Seebeck coefficient of thermoelectric Ca3Co4O9. Phys. Rev. Lett. 108, 196601 (2012)CrossRefGoogle Scholar
  7. 7.
    P. Yordanov, P. Wochner, S. Ibrahimkutty, C. Dietl, F. Wrobel, R. Felici, G. Gregori, J. Maier, B. Keimer, H.U. Habermeier, Perovskite substrates boost the thermopower of cobaltate thin films at high temperatures. Appl. Phys. Lett. 110, 42 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Sakai, T. Kanno, S. Yotsuhashi, A. Odagawa, H. Adachi, Control of epitaxial growth orientation and anisotropic thermoelectric properties of misfit-type Ca3Co4O9 thin films. Jpn. J. Appl. Phys. Part 2 44, 966–969 (2005)CrossRefGoogle Scholar
  9. 9.
    T. Sun, J. Ma, Q.Y. Yan, Y.Z. Huang, J.L. Wang, H.H. Hng, Influence of pulsed laser deposition rate on the microstructure and thermoelectric properties of Ca3Co4O9 thin films. J. Cryst. Growth 311, 4123–4128 (2009)CrossRefGoogle Scholar
  10. 10.
    Y.F. Hu, E. Sutter, W.D. Si, Q. Li, Thermoelectric properties and microstructure of c-axis-oriented Ca3Co4O9 thin films on glass substrates. Appl. Phys. Lett. 87, 171912 (2005)CrossRefGoogle Scholar
  11. 11.
    K. Sugiura, H. Ohta, K. Nomura, M. Hirano, H. Hosono, K. Koumoto, High electrical conductivity of layered cobalt oxide Ca3Co4O9 epitaxial films grown by topotactic ion-exchange method. Appl. Phys. Lett. 89, 032111 (2006)CrossRefGoogle Scholar
  12. 12.
    X. Zhu, Y. Sun, H. Lei, X. Li, R. Ang, B. Zhao, W. Song, D. Shi, S. Dou, Growth of Ca3Co4O9 films: simple chemical solution deposition and stress induced spontaneous dewetting. J. Appl. Phys. 102, 103519 (2007)CrossRefGoogle Scholar
  13. 13.
    R. Moubah, S. Colis, C. Leuvrey, G. Schmerber, M. Drillon, A. Dinia, Synthesis and characterization of Ca3Co4O9 thin films prepared by sol–gel spin-coating technique on Al2O3(001). Thin Solid Films 518, 4546–4548 (2010)CrossRefGoogle Scholar
  14. 14.
    L. Zhang, T.T. Tan, S. Li, The effect of annealing oxygen concentration in the transformation of CaxCoO2 to thermoelectric Ca3Co4O9. RSC Adv. 5, 28158–28162 (2015)CrossRefGoogle Scholar
  15. 15.
    B. Paul, J.L. Schroeder, S. Kerdsongpanya, N. Van Nong, N. Schell, D. Ostach, J. Lu, J. Birch, P. Eklund, Mechanism of formation of the thermoelectric layered cobaltate Ca3Co4O9 by annealing of CaO–CoO thin films. Adv. Electron. Mater. 1, 371–378 (2015)CrossRefGoogle Scholar
  16. 16.
    M.-G. Kang, K.-H. Cho, S.-M. Oh, J.-S. Kim, C.-Y. Kang, S. Nahm, S.-J. Yoon, High-temperature thermoelectric properties of nanostructured Ca3Co4O9 thin films. Appl. Phys. Lett. 98, 142102 (2011)CrossRefGoogle Scholar
  17. 17.
    D.J. Kester, R. Messier, Macro-effects of resputtering due to negative ion bombardment of growing thin films. J. Mater. Res. 8, 1928–1937 (1993)CrossRefGoogle Scholar
  18. 18.
    S.M. Rossnagel, J.J. Cuomo, Negative ion effects during magnetron and ion beam sputtering of YBa2Cu3Ox. AIP Conf. Proc. 165, 106–113 (1988)CrossRefGoogle Scholar
  19. 19.
    J. Hanak, J. Pellicane, Effect of secondary electrons and negative ions on sputtering of films. J. Vac. Sci. Technol. 13, 406–409 (1976)CrossRefGoogle Scholar
  20. 20.
    J. Grace, D. McDonald, M. Reiten, J. Olson, R. Kampwirth, K. Gray, Effect of oxidant on resputtering of Bi from Bi–Sr–Ca–Cu–O films. J. Vac. Sci. Technol. A 10, 1600–1603 (1992)CrossRefGoogle Scholar
  21. 21.
    H.P. An, C.H. Zhu, W.W. Ge, Z.Z. Li, G.D. Tang, Growth and thermoelectric properties of Ca3Co4O9 thin films with c-axis parallel to Si substrate surface. Thin Solid Films 545, 229–233 (2013)CrossRefGoogle Scholar
  22. 22.
    A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, J. Hejtmanek, Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B 62, 166–175 (2000)CrossRefGoogle Scholar
  23. 23.
    J. Cheng, Y. Sui, Y. Wang, X. Wang, W. Su, First-order phase transition characteristic of the high temperature metal–semiconductor transition in [Ca2CoO3]0.62[CoO2]. Appl. Phys. A 94, 911–916 (2009)CrossRefGoogle Scholar
  24. 24.
    Y.F. Hu, W.D. Si, E. Sutter, Q. Li, In situ growth of c-axis-oriented Ca3Co4O9 thin films on Si (100). Appl. Phys. Lett. 86, 082103 (2005)CrossRefGoogle Scholar
  25. 25.
    K. Sugiura, H. Ohta, K. Nomura, T. Saito, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, Thermoelectric properties of the layered cobaltite Ca3Co4O9 epitaxial films fabricated by topotactic ion-exchange method. ‎Metall. Trans. 48, 2104–2107 (2007)Google Scholar
  26. 26.
    T. Sun, H.H. Hng, Q.Y. Yan, J. Ma, Enhanced high temperature thermoelectric properties of Bi-doped c-axis oriented Ca3Co4O9 thin films by pulsed laser deposition. J. Appl. Phys. 108, 083709 (2010)CrossRefGoogle Scholar
  27. 27.
    I. Matsubara, R. Funahashi, M. Shikano, K. Sasaki, H. Enomoto, Cation substituted (Ca2CoO3)xCoO2 films and their thermoelectric properties. Appl. Phys. Lett. 80, 4729–4731 (2002)CrossRefGoogle Scholar
  28. 28.
    X. Kleber, P. Roux, M. Morin, Sensitivity of the thermoelectric power of metallic materials to an elastic uniaxial strain. Philos. Mag. Lett. 89, 565–572 (2009)CrossRefGoogle Scholar
  29. 29.
    K. Nagasawa, S. Daviero-Minaud, N. Preux, A. Rolle, P. Roussel, H. Nakatsugawa, O. Mentré, Ca3Co4O9−δ: a thermoelectric material for SOFC cathode. Chem. Mater. 21, 4738–4745 (2009)CrossRefGoogle Scholar
  30. 30.
    F.W. Lytle, X-ray diffractometry of low-temperature phase transformations in strontium titanate. J. Appl. Phys. 35, 2212–2215 (1964)CrossRefGoogle Scholar
  31. 31.
    C. Chen, T. Zhang, R. Donelson, D. Chu, R. Tian, T.T. Tan, S. Li, Thermopower and chemical stability of Na0.77CoO2/Ca3Co4O9 composites. Acta Mater. 63, 99–106 (2014)CrossRefGoogle Scholar
  32. 32.
    S. Butt, W. Xu, M.U. Farooq, G.K. Ren, F. Mohmed, Y. Lin, C.-W. Nan, Enhancement of thermoelectric performance in hierarchical mesoscopic oxide composites of Ca3Co4O9 and La0.8Sr0.2CoO3. J. Am. Ceram. Soc. 98, 1230–1235 (2015)CrossRefGoogle Scholar
  33. 33.
    F. Delorme, P. Diaz-Chao, E. Guilmeau, F. Giovannelli, Thermoelectric properties of Ca3Co4O9–Co3O4 composites. Ceram. Int. 41, 10038–10043 (2015)CrossRefGoogle Scholar
  34. 34.
    V.A.M. Brabers, A.D.D. Broemme, Low-spin-high-spin transition in the Co3O4 spinel. J. Magn. Magn. Mater. 104, 405–406 (1992)CrossRefGoogle Scholar
  35. 35.
    A.D.D. Broemme, Correlation between thermal expansion and Seebeck coefficient in polycrystalline Co3O4. IEEE Trans. Electr. Insul. 26, 49–52 (1991)CrossRefGoogle Scholar
  36. 36.
    A.S.M. Rao, K. Narender, Studies on thermophysical properties of CaO and MgO by -ray attenuation. J. Chem. Thermodyn. 2014, 8 (2014)Google Scholar
  37. 37.
    K. Nagasawa, O. Mentre, S. Daviero-Minaud, N. Preux, A. Rolle, H. Nakatsugawa, The electrochemical and thermal performances of Ca3Co4O9−δ as a cathode material for IT-SOFCs. ECS Trans. 25, 2625–2630 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShaanxi University of Science & TechnologyXi’anPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringUNSW AustraliaSydneyAustralia

Personalised recommendations