Electrical properties and impedance spectroscopy of crystallographically textured 0.675 [Pb(Mg1/3Nb2/3)O3]-0.325 [PbTiO3] ceramics
- 117 Downloads
- 1 Citations
Abstract
Crystallographically \(\left\langle {00{\text{1}}} \right\rangle\)-textured lead magnesium niobate (PMN)—lead titanate (PT) solid solution in the ratio of 0.675PMN-0.325PT was fabricated by tape-casting method using barium titanate (BaTiO3-BT) templates. Random PMN-PT with the same composition was also produced by tape-casting method for comparison. According to electromechanical and dielectric investigations, textured PMN-PT ceramics produced at 1150 °C for 2 h in oxygen atmosphere with 1 vol% BT were found to display the optimum properties. Dielectric constant, dielectric loss and piezoelectric coefficient of these samples were found to be as 1950, 0.002 and 700 pC/N, respectively. The impedance spectroscopy of the samples was conducted and the results of measurements taken at 300 and 500 °C were compared. A significant decrease in the electrical conductivity was observed with the development of texture in PMN-PT. The slightly depressed semicircles that were obtained from Nyquist diagrams indicated non-Debye-type relaxation with a distribution of relaxation time.
Notes
Acknowledgements
The authors wish to acknowledge the financial support of Turkish Academy of Sciences (Gebip Programme) and TUBITAK Project #217M086. The authors also would like to thank Prof. Sedat Alkoy and Prof. Huseyin Yilmaz for fruitful discussions.
References
- 1.G. Shirane, S. Hoshino, J. Phys. Soc. Jpn. 6, 265 (1951)CrossRefGoogle Scholar
- 2.B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971), p. 135Google Scholar
- 3.Y. Yan, K.H. Cho, S. Priya, J. Am. Ceram. Soc. 94, 1784 (2011)CrossRefGoogle Scholar
- 4.R.A. Islam, S. Priya, Appl. Phys. Lett. 88, 032903 (2006)CrossRefGoogle Scholar
- 5.S.S. Chandratreya, R.M. Fulrath, J.A. Pask, J. Am. Ceram. Soc. 64, 422 (1981)CrossRefGoogle Scholar
- 6.B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, G. Shirane, Phys. Rev. B 61, 8687 (2000)CrossRefGoogle Scholar
- 7.R.E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford University Press, New York, 2004)Google Scholar
- 8.S.E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804 (1997)CrossRefGoogle Scholar
- 9.S.E. Park, T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1140 (1997)CrossRefGoogle Scholar
- 10.N. Yamamotoa, Y. Yamashita, Y. Hosonoa, K. Itsumia, Sens. Actuators A 200, 16 (2013)CrossRefGoogle Scholar
- 11.S. Zhang, F. Li, J. Appl. Phys. 111, 031301 (2012)CrossRefGoogle Scholar
- 12.G.L. Messing, S. Trolier-McKinstry, E.M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P.W. Rehrig, K.B. Eitel, E. Suvaci, M. Seabaugh, K.S. Oh, Crit. Rev. Solid State Mater. Sci. 29, 45 (2004)CrossRefGoogle Scholar
- 13.K.T. Zawilski, M.C.C. Custodio, R.C. DeMattei, S.-G. Lee, R.G. Monteiro, H. Odagawa, R.S. Feigelson, J.Cryst. Growth 258, 353 (2003)CrossRefGoogle Scholar
- 14.Y. Chang, Y. Sun, J. Wu, X. Wang, S. Zhang, B. Yang, G.L. Messing, W. Cao, J. Eur. Ceram. Soc. 36, 1973 (2016)CrossRefGoogle Scholar
- 15.T. Richter, S. Denneler, C. Schuh, E. Suvaci, R. Moss, J. Am. Ceram. Soc. 91, 929 (2008)CrossRefGoogle Scholar
- 16.E.M. Sabolsky, S. Trolier-McKinstry, G.L. Messing, J. Appl. Phys. 93, 4072 (2003)CrossRefGoogle Scholar
- 17.K.H. Brosnan, Processing, properties, and application of textured 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 ceramics. Ph.D Dissertation, The Pennsylvania State University, University Park, PA, 2007Google Scholar
- 18.S.F. Poterala, S. Trolier-McKinstry, R.J. Meyer, G.L. Messing, J. Appl. Phys. 110, 014105 (2011)CrossRefGoogle Scholar
- 19.N.V. Prasad, M.C. Sekhar, G.S. Kumar, Ferroelectrics 366, 55 (2008)CrossRefGoogle Scholar
- 20.E. Mensur Alkoy, A. Berksoy-Yavuz, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 2121 (2012)CrossRefGoogle Scholar
- 21.E. Mensur-Alkoy, A. Berksoy-Yavuz, S. Alkoy, Ferroelectrics 447, 95 (2013)CrossRefGoogle Scholar
- 22.M.A.L. Nobre, S. Lafredi, Catal. Today 78, 529 (2003)CrossRefGoogle Scholar
- 23.N. Hirose, A. West, J. Am. Ceram. Soc. 79, 1633 (1996)CrossRefGoogle Scholar
- 24.S.L. Swartz, T.R. Shrout, Mater. Res. Bull. 17, 1245 (1982)CrossRefGoogle Scholar
- 25.D. Liu, Y. Yan, H. Zhou, J. Am. Ceram. Soc. 90, 1323 (2007)CrossRefGoogle Scholar
- 26.S. Dursun, Ultrasonic motor applications of crystallographically textured piezoceramics. Ph.D. Dissertation, Gebze Technical University, Kocaeli, Turkey, 2017Google Scholar
- 27.Y. Yan, Y.U. Wang, S. Priya, Appl. Phys. Lett. 100, 192905 (2012)CrossRefGoogle Scholar
- 28.F.K. Lotgering, J. Inorg. Nucl. Chem. 9, 113–123 (1959)CrossRefGoogle Scholar
- 29.Y. Yan, L. Yang, Y. Zhou, K.-H. Cho, J.S. .Heo, S. Priya, J. Appl. Phys. 118, 104101 (2015)CrossRefGoogle Scholar
- 30.G. Feng, H. Rong-zi, L. Jia-ji, Y. Yong-hong, T. Chang-sheng, Eur. Ceram. Soc. 28, 2063 (2008)CrossRefGoogle Scholar
- 31.S. Alkoy, S. Dursun, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(10), 2044 (2013)CrossRefGoogle Scholar
- 32.S. Kwon, E.M. Sabolsky, G.L. Messing, J. Am. Ceram. Soc. 84, 648 (2001)CrossRefGoogle Scholar
- 33.Y. Yoshikawa, K. Tsuzuki, J. Am. Ceram. Soc. 75(9), 2520 (1992)CrossRefGoogle Scholar
- 34.E.M. Sabolsky, A.R. James, S. Kwon, S. Trolier-McKinstry, G.L. Messing, Appl. Phys. Lett. 78(17), 2551–2553 (2001)CrossRefGoogle Scholar
- 35.Y. Cheng, J. Wu, Y. Sun, S. Zhang, X. Wang, B. Yang, G.L. Messing, W. Cao, Appl. Phys. Lett. 107, 082902 (2012)CrossRefGoogle Scholar
- 36.S.M. Gupta, P. Pandit, P. Patro, A.J. Kulkarni, V.K. Wadhawan, Mater. Sci. Eng. B 120, 194 (2005)CrossRefGoogle Scholar
- 37.J. Ji, B. Fang, X. Zhao, S. Zhang, Q. Du, J. Ding, H. Luo, J. Mater. Sci. Mater. Electron. 29, 4422 (2018)CrossRefGoogle Scholar
- 38.K. Lily, K. Kumari, K. Prasad, R.N.P. Choudhary, J. Alloys Compd. 453, 325 (2008)CrossRefGoogle Scholar
- 39.B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007)CrossRefGoogle Scholar
- 40.B. Pati, R.N.P. Choudhary, P.R. Das, B.N. Parida, R. Padhee, J. Electr. Mater. 42, 1225 (2013)CrossRefGoogle Scholar