Advertisement

Highly efficient light responsive BiOCl/AgI composites for photocatalytic degradation of 3-CP under visible and UV light irradiations

  • Ali İmran Vaizoğullar
Article
  • 56 Downloads

Abstract

Novel visible light sensitive BiOCl/AgI composites were synthesized by a facile precipitation technique. Samples were characterized by SEM (scanning electron microscope), XRD (X-ray diffraction), UV-DRS (UV-diffuse reflectance spectroscopy) and XPS (X-ray photoelectron spectroscopy). Photocatalytic activity of the samples was evaluated using 3-CP under UV–Visible irradiation. Compared to pure BiOCl, AgI and other BiOCl/AgI, the composites exhibited more catalytic activity under both UV and visible lights within 120 min. Optimal content of the BiOCl in the composite system was found as 40%. The excellent degradation of 3-CP under light was attributed to the efficient separation of photo-induced charge carriers, defect levels, iodide and chlorine \(({{\text{I}}^ \cdot },{\text{C}}{{\text{l}}^ \cdot })\) radicals. The radical scavenging activities also illustrate that holes and superoxide radicals \(({{\text{h}}^+})\) \(~{\text{and}}\,({\text{O}}_{2}^{{ - \cdot }})\) are dominant agents in the photocatalytic degradation process. These results demonstrated that BiOCl/AgI systems are very useful to decompose persistent organic pollutants.

Notes

Acknowledgements

This study has been supported by Mugla Sitki Kocman University Coordination of Scientific Research with 15/139.

References

  1. 1.
    L.M.B. Batista, A.J. dos Santos, D.R. da Silva, A.P. de Melo Alves, S. Garcia-Segura, C.A. Martinez-Huitle, Sci. Total Environ. 596, 79–86 (2017)CrossRefGoogle Scholar
  2. 2.
    F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Appl. Catal. A 359, 25–40 (2009)CrossRefGoogle Scholar
  3. 3.
    G. Zhang, Y. Tan, Z. Sun, S. Zheng, J. Environ. Chem. Eng. 5(1), 1196–1204 (2017)CrossRefGoogle Scholar
  4. 4.
    J. Jiang, H. Wang, X. Chen, S. Li, T. Xie, D. Wang, Y. Lin, J. Colloid. Int. Sci. 494, 130–138 (2017)CrossRefGoogle Scholar
  5. 5.
    B.R. Cruz-Ortiz, J.W. Hamilton, C. Jablos, L. Diaz-Jimenez, D.A. Cortes-Hernandez, P.K. Sharma, M. Castro-Alferez, P. Fernandez-Ibanez, P.S.M. Dunlop, J.A. Byrne, Chem. Eng. J. 316, 179–186 (2017)CrossRefGoogle Scholar
  6. 6.
    H. Kono, R. Kusumoto, J. Water Process. Eng. 7, 83–93 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Yao, D. Wen, J. Shen, J. Wang, J. Water Process. Eng. 11, 98–103 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1(1), 1–21 (2000)CrossRefGoogle Scholar
  9. 9.
    Y. Li, Y. Tian, R. Zhang, L. Ma, C. Zhou, X. Tian, Inorg. Chim. Acta. 439, 123–129 (2016)CrossRefGoogle Scholar
  10. 10.
    J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Chem. Mater. 19(3), 366–373 (2007)CrossRefGoogle Scholar
  11. 11.
    A.R. He, S. Cao, P. Zhou, J. Yu, Chin. J. Catal. 35(7), 989–1007 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Fang, C. Ding, Q. Liang, Z. Li, S. Xu, Y. Peng, D. Lu, J. Alloy.Compd. 684, 230–236 (2016)CrossRefGoogle Scholar
  13. 13.
    Z. Song, X. Dong, N. Wang, L. Zhu, Z. Luo, J. Fang, C. Xiong, Chem. Eng. J. 317, 925–934 (2017)CrossRefGoogle Scholar
  14. 14.
    H. Huang, N. Huang, Z. Wang, G. Xia, M. Chen, L. He, C. Ren, J. Colloid Interface Sci. 502, 77–88 (2017)CrossRefGoogle Scholar
  15. 15.
    Z. Xiang, Y. Wang, P. Ju, Y. Long, D. Zhang, J. Alloy Compd. 721, 622–627 (2017)CrossRefGoogle Scholar
  16. 16.
    L. Chen, D. Jiang, T. He, Z. Wu, M. Chen, CrystEngComm 15(37), 7556–7563 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Zhao, Y. Zhang, Y. Zhou, K. Qiu, C. Zhang, J. Fang, X. Sheng, J. Photochem. Photobiol. A 350, 94–102 (2018)CrossRefGoogle Scholar
  18. 18.
    H. Cheng, B. Huang, Y. Dai, Nanoscale 6(4), 2009–2026 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Zhang, Z. Ma, J. Taiwan Inst. Chem. E 81, 225–231 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Ye, H. Lin, J. Cao, S. Chen, Y.J. Chen, Mol. Catal. A 397, 85–92 (2015)CrossRefGoogle Scholar
  21. 21.
    A. Vaizoğullar, Asia-Pac. J. Chem. Eng. 13, 1–10 (2018)CrossRefGoogle Scholar
  22. 22.
    H. Cheng, B. Huang, Y. Dai, Nanoscale 6, 2009–2026 (2014)CrossRefGoogle Scholar
  23. 23.
    L. Zhang, C. Hu, H. Ji, Appl. Catal. B 205, 34–41 (2017)CrossRefGoogle Scholar
  24. 24.
    H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, H. Wan, Appl. Catal. B 129, 182–193 (2013)CrossRefGoogle Scholar
  25. 25.
    N. Salah, A. Hameed, M. Aslam, S.S. Babkair, F.S. Bahabri, J. Environ. Manag. 177, 53–64 (2016)CrossRefGoogle Scholar
  26. 26.
    S. Suwanboon, S. Klubnuan, N. Jantha, P. Amornpitoksuk, P. Bangrak, Mater. Lett. 115, 275–278 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Fang, C. Ding, Q. Liang, Z. Li, Y. Xu Seng, D. Lu, J. Alloy. Compd. 684, 230–236 (2016)CrossRefGoogle Scholar
  28. 28.
    Q. Yang, J. Huang, J. Zhong, J. Chen, J. Li, S. Sun, Curr. Appl. Phys. 171, 1202–1207 (2017)CrossRefGoogle Scholar
  29. 29.
    A. Tabib, W. Bouslama, B. Sieber, A. Addad, H. Elhouichet, M. Férid, R. Boukherrou, Appl. Surf. Sci. 396, 1528–1538 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vocational School Health Care, Medical Laboratory ProgrammeMuğla Sıtkı Koçman UniversityMuğlaTurkey

Personalised recommendations