Advertisement

Enhancement in the dielectrics of poly(o-toluidine)/single wall carbon nanotubes (POT/SWCNTS) polymer nanocomposites for electrical energy storage

  • Shama Islam
  • Shabir Ahmad
  • Hana Khan
  • M. Zulfequar
Article
  • 45 Downloads

Abstract

Present study focuses on influence of carbon nanotubes in POT polymer, in order to improve performance of energy storage devices. (POT/SWCNTS) nanocomposites are synthesized by situ polymerization with different concentrations of SWCNTS. POT had long chain of qunoid and benzoined rings provide together large transport of charge along with SWNTs resulting to store large amount of electric charge. Synthesized samples are characterized by dc conductivity; UV–Vis studies, FTIR, X-ray diffraction (XRD) and dielectric techniques. Electrical conductivity enhances up to four orders with dopant concentrations. Incorporation of dopant into polymer matrix is confirmed by FTIR studies. XRD analysis revealed crystallinity of nanocomposites. Present consequences of synthesized polymer nanocomposites shows meaningful impact with changes in dielectric properties due to better dispersion of SWCNTS in polymer matrix. As results enhancements in dielectric parameters values, highlights their great potential for supercapacitors. These nanocomposites do not need any binding substance that is an important practical advantage.

Notes

Acknowledgements

This work supported by the SERB (File No: PDF/2016/000587), Delhi, Science and Engineering Research Board (a statutory body of the development of Science & technology, government of India).

References

  1. 1.
    J. Ohshita, M. Miyazaki, D. Tanaka, Y. Morihara, Y. Fujita, Y. Kunugi, Synthesis of poly(dithienogermole-2, 6-diyl) s. Polym. Chem. 4(10), 3116–3122 (2013)CrossRefGoogle Scholar
  2. 2.
    J.Y. Li, Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction. Phys. Rev. Lett. 90(21), 217601 (2003)CrossRefGoogle Scholar
  3. 3.
    D.J. Bindl, M.S. Arnold, Semiconducting carbon nanotube photovoltaic photodetectors. Int. J. High Speed Electron. Syst. 20, 687 – 695 (2011)CrossRefGoogle Scholar
  4. 4.
    P.H. Mutin, G. Guerrero, A. Vioux, Hybrid materials from organophosphorus coupling molecules. J. Mater. Chem. 15, 3761–3768 (2005)CrossRefGoogle Scholar
  5. 5.
    K. Fu, C. Sun, N. Mathews, G.S. Mhaisalkar, Dye-sensitized solar cells based on tin oxide nanowire networks. Nanosci. Nanotechnol. Lett. 4, 733–737 (2012)CrossRefGoogle Scholar
  6. 6.
    A.G. Macdiarmaid, A novel role for organic polymers (Nobel lecture). Synth. Met. 40, 2581–2590 (2001)Google Scholar
  7. 7.
    X. Gong, J.C. Ostrowski, D. Moses, G.C. Bazan, A.J. Heeger, High-performance polymer-based electrophosphorescent light-emitting diodes. J. Polym. Sci. B 41(21), 2691–2705 (2003)CrossRefGoogle Scholar
  8. 8.
    Z. Zhang, R.M. Edkins, J. Nitsch, K. Fucke, A. Steffen, L.E. Longobardi, D.W. Stephan, C. Lambert, T.B. Marder, Optical and electronic properties of air- stable organoboron compounds with strongly electron-accepting bis (fluoromesityl) boryl groups. Chem. Sci. 6(1), 308–321 (2015)CrossRefGoogle Scholar
  9. 9.
    C.Z. Loebick, R. Podila, J. Reppert, J. Chudow, F. Ren, G.L. Haller et al., Selective synthesis of subnanometer diameter semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 32, 132 (2010)Google Scholar
  10. 10.
    L. Ding, A. Tselev, J.Y. Wang, D.N. Yuan, H.B. Chu, T.P. McNicholas et al., Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 9(2), 800–805 (2009)CrossRefGoogle Scholar
  11. 11.
    P.C. Collins, M.S. Arnold, P. Avouris, Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 5517 (2001)CrossRefGoogle Scholar
  12. 12.
    G.Y. Zhang, P.F. Qi, X.R. Wang, Y.R. Lu, X.L. Li, R. Tu et al., Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314, 5801 (2006)CrossRefGoogle Scholar
  13. 13.
    Y. Chen, L.R. Guo, W. Chen, X.-J. Yang, B. Jin, L.M. Zhang, X.H. Xia, 3- mercaptopropylphophonic acid modified gold electrode for electrochemical detection of dopamine. Bioelectrochemistry 75(1), 26–31 (2009)CrossRefGoogle Scholar
  14. 14.
    J. Janata, M. Josowicz, Conducting polymers in electronic chemical sensors. Nat. Mater. 2, 19–24 (2003)CrossRefGoogle Scholar
  15. 15.
    M.M. Alam, J. Wang, Y. Guo, S.P. Lee, H. R. Tseng, Electrolyte-gated transistors based on conducting polymer nanowire junction arrays. J. Phys. Chem. B 109, 12777–12784 (2005)CrossRefGoogle Scholar
  16. 16.
    J. Wang, S. Chan, R.R. Carlson, Y. Luo, G. Ge, R.S. Ries, J.R. Heath, H.R. Tseng, Electrochemically fabricated polyanilinenanoframework electrode junctions that function as resistive sensors. Nano Lett. 4, 1693–1697 (2004)CrossRefGoogle Scholar
  17. 17.
    P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.J. Ploehn, H.C. Loye, Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2(4), 1697–1733 (2009)CrossRefGoogle Scholar
  18. 18.
    H.N. Tsao, D.M. Cho, I. Park, M.P. Hansen, A. Mavrinsky, D.Y. Yoon, R. Graf, W. Pisula, H.W. Spiess, K. Mullen, Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 133, 2605 – 2612 (2011)CrossRefGoogle Scholar
  19. 19.
    E.K. Hobbie, T. Ihle, J.M. Harris, M.R. Semler, Empirical evaluation of attractive van der Waals potentials for type-purified single-walled carbon nanotubes. Phys. Rev. B 85(24), 9 (2012)CrossRefGoogle Scholar
  20. 20.
    J.G. Duque, C.G. Densmore, S.K. Doorn, Saturation of surfactant structure at the single-walled carbon nanotube surface. J. Am. Chem. Soc. 132(45), 16165–16175 (2010)CrossRefGoogle Scholar
  21. 21.
    T. Tanaka, H. Jin, Y. Miyata, S. Fujii, H. Suga, Y. Naitoh et al., Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett. 9(4), 1497–1500 (2009)CrossRefGoogle Scholar
  22. 22.
    G. Dukovic, B.E. White, Z.Y. Zhou, F. Wang, S. Jockusch, M.L. Steigerwald et al., Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes. J. Am. Chem. Soc. 126(46), 15269–15276 (2004)CrossRefGoogle Scholar
  23. 23.
    A.B. Moghaddam, M. Kazemzad, M.R. Nabid, H.H. Dabaghi, Improved voltammograms of hydrocaffeic acid on the single-walled carbon nanotube/graphite-film surfaces. Int. J. Electrochem. Sci. 3, 291 (2008)Google Scholar
  24. 24.
    P. Kim, N.M. Doss, J.P. Tillotson, P.J. Hotchkiss, M.J. Pan, S.R. Marder, J. Li, J.P. Calame, J.W. Perry, High energy density nanocomposites based on surface modified BaTiO3 and a ferroelectric polymer. ACS Nano 3(9), 2581–2592 (2009)CrossRefGoogle Scholar
  25. 25.
    C. Huang, Q. Zhang, Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites. Adv. Funct. Mater. 14(5), 501–506 (2004)CrossRefGoogle Scholar
  26. 26.
    L. Wang et al., Three-dimensional Kenaf stem-derived porous carbon/MnO2 for high-performance supercapacitors. Electrochim. Acta 135, 380–387 (2014)CrossRefGoogle Scholar
  27. 27.
    S.R. Rusi, Majid, Controllable synthesis of flowerlike α-MnO2 as electrode for pseudocapacitor application. Solid State Ion. 262, 220–225 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Shen, Y. Lin, C.W. Nan, Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Adv. Funct. Mater. 17(14), 2405–2410 (2007)CrossRefGoogle Scholar
  29. 29.
    I. Shama, A.M. Siddiqui, M. Husain, M. Zulfequar, Synthesis, DC conductivity and dielectric properties of rf-plasma polymerized poly(3-methyl thiophene) thin films. Int. J. Adv. Res. Sci. Technol. 2(3), 150–154 (2013)Google Scholar
  30. 30.
    M.J. Deng, J.K. Chang, C.C. Wang, K.W. Chen, C.M. Lin, M.T. Tang, J.M. Chen, K.T. Lu, High-performance electrochemical pseudo-capacitor based on MnO2 nanowires/Ni foam as electrode with a novel Li-ion quasi-ionic liquid as electrolyte. Energy. Environ. Sci. 4, 3942–3946 (2011)CrossRefGoogle Scholar
  31. 31.
    S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44(1), 362–381 (2015)CrossRefGoogle Scholar
  32. 32.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Oxford University Press, Oxford, 2012)Google Scholar
  33. 33.
    J. Lu, K.S. Moon, B.K. Kim, C.P. Wong, High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications. Polymer 48(6), 1510–1516 (2007)CrossRefGoogle Scholar
  34. 34.
    V.N. Prigodin, A.J. Epstein, Nature of insulator–metal transition and novel mechanism of charge transport in the metallic state of highly doped electronic polymers. Synth. Met. 125(1), 43–53 (2001)CrossRefGoogle Scholar
  35. 35.
    S. Islam, G.B. Lakshmi, M. Zulfequar, M. Husain, A.M. Siddiqui, Comparative studies of chemically synthesized and RF plasma-polymerized poly(o-toluidine). Pramana 84(4), 653–665 (2015)CrossRefGoogle Scholar
  36. 36.
    B. Liu, J. Zhang, X.F. Wang, G. Chen, D. Chen, C.W. Zhou, G.Z. Shen, Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 12, 3005–3011 (2012)CrossRefGoogle Scholar
  37. 37.
    S. Islam, M. Ganaie, S. Ahmad, A.M. Siddiqui, M. Zulfequar, Dopant effect and characterization of poly(o-toluidine)/vanadium pentoxide composites prepared by in situ polymerization process. Int. J. Phys. 2, 105–122 (2014)CrossRefGoogle Scholar
  38. 38.
    N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J.K. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26(31), 5480–5487 (2014)CrossRefGoogle Scholar
  39. 39.
    Z.M. Dang, L. Wang, Y.I. Yin, Q. Zhang, Q.Q. Lei, Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv. Mater. 19(6), 852–857 (2007)CrossRefGoogle Scholar
  40. 40.
    F. Du, R.C. Scogna, W. Zhou, S. Brand, J.E. Fischer, K.I. Winey, Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24), 9048–9055 (2004)CrossRefGoogle Scholar
  41. 41.
    T. Tanaka, Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 12(5), 914–928 (2005)CrossRefGoogle Scholar
  42. 42.
    F.B. Zhang, J. Ohshita, M. Miyazaki, D. Tanaka, Y. Morihara, Effects of substituents and molecular weight on the optical, thermal and photovoltaic properties of alternating dithienogermole–dithienylbenzothiadiazole polymers. Polym. J. 46(9), 628 (2014)CrossRefGoogle Scholar
  43. 43.
    S.R. Elliot, Physics of Amorphous Materials (Longman Publication, London, 1991)Google Scholar
  44. 44.
    I. Shama, G.B.V.S. Lakshmi, A.M. Siddiqui, M. Husain, M. Zulfequar, Synthesis, electrical conductivity, and dielectric behavior of polyaniline/V2O5 composites. Int. J. Polym. Sci. 2013, 307525 (2013)Google Scholar
  45. 45.
    J. Claude, Y. Lu, K. Li, Q. Wang, Electrical storage in poly(vinylidene fluoride) based ferroelectric polymers: correlating polymer structure to electrical breakdown strength. Chem. Mater. 20(6), 2078–2080 (2008)CrossRefGoogle Scholar
  46. 46.
    B. Chu, M. Lin, B. Neese, X. Zhou, Q. Chen, Q.M. Zhang, Large enhancement in polarization response and energy density of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) by interface effect in nanocomposites. Appl. Phys. Lett. 91(12), 122909 (2007)CrossRefGoogle Scholar
  47. 47.
    Z. Zhang, Q. Meng, T.M. Chung, Energy storage study of ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymers. Polymer 50(2), 707–715 (2009)CrossRefGoogle Scholar
  48. 48.
    W. Si, W. Lei, Y. Zhang, M. Xia, F. Wang, Q. Hao, Electrodeposition of graphene oxide doped poly(3,4-ethylenedioxythiophene) film and its electrochemical sensing of catechol and hydroquinone. Electrochim. Acta 85, 295–301 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shama Islam
    • 1
  • Shabir Ahmad
    • 1
  • Hana Khan
    • 1
  • M. Zulfequar
    • 1
  1. 1.Department of PhysicsJamia Millia IslamiaNew DelhiIndia

Personalised recommendations