Advertisement

Effects of crystalline phase formation of multiferroic BiFeO3 on microwave absorption characteristics

  • Siti Nor Ain Rusly
  • Khamirul Amin Matori
  • Ismayadi Ismail
  • Zulkifly Abbas
  • Zaiki Awang
  • Fadzidah Mohd Idris
  • Idza Riati Ibrahim
Article
  • 25 Downloads

Abstract

This paper reports a study of the microwave absorption properties of multiferroic BiFeO3 (BFO) epoxy resin composites. The effects of various sintering temperatures on the crystalline phase of BFO and its microwave absorption characteristics were critically analyzed. BFO nanoparticles were synthesized by mechanical activation high energy ball milling (HEBM) with post heat treatment over various temperatures ranging from 700 to 800 °C. The XRD results showed by using the HEBM method, BFO phase is formed at a lower sintering temperature of 700 °C compared to conventional solid state reaction due to the enhanced diffusion rates. The phase composition and the grain sizes had significant influence on the permeability, permittivity and reflection loss values of BFO composites measured by a network analyzer in the frequency range from 8 to 18 GHz. It was observed that the purity fraction of BFO phase and the grain sizes increased with the sintering temperature. By increasing the sintering temperature up to 775 °C, the microwave absorption properties were enhanced over a broad working frequency range corresponding to the reflection loss below − 10 dB (i.e. 90% absorption) due to crystalline phase changes. BFO samples sintered at 775 °C demonstrated higher absorption ability with RLmin − 40.5 dB over a 1.31 GHz bandwidth, showing that BiFeO3 has great potential as a microwave absorbing material.

Notes

Acknowledgements

This work was supported by Ministry of Higher Education Malaysia through the Long-Term Research Grant Scheme [LRGS/B-U/2013/UPNM/Defence & Security-P2]; and Universiti Putra Malaysia through Graduate Research Fellowship [GRF] and Putra Grant- Putra Graduate Initiative (IPS).

References

  1. 1.
    C.X. Hu, Stealth Coating Technology (Chemical Industry Press, Beijing, 2004), pp. 12–119Google Scholar
  2. 2.
    T. Wang, P. Wang, Y. Wang, L. Qiao, A broadband far-field microwave absorber with a sandwich structure. Mater. Des. 95, 486–489 (2016)CrossRefGoogle Scholar
  3. 3.
    P. Liu, Y. Huang, L. Wang, W. Zhang, Synthesis and excellent electromagnetic absorption properties of polypyrrole-reduced graphene oxide—Co3O4 nanocomposites. J. Alloys Compd. 573, 151–156 (2013)CrossRefGoogle Scholar
  4. 4.
    S.S.S. Afghahi, M. Jafarian, C.A. Stergiou, Multicomponent nanocomposites with carbonyl Fe-CoFe2O4-CaTiO3 fillers for microwave absorption applications. Mater. Des. 112, 462–468 (2016)CrossRefGoogle Scholar
  5. 5.
    J. Zhang, L. Wang, Q. Zhang, Hydrothermal carbonization synthesis of BaZn2Fe16O27/Carbon composite microwave absorbing materials and its electromagnetic performance. J. Mater. Sci.: Mater. Electron. 26, 2538–2543 (2015)Google Scholar
  6. 6.
    J. Huo, L. Wang, H. Yu, Polymeric nanocomposites for electromagnetic wave absorption. J. Mater. Sci. Electron. 44, 3917–3927 (2009)CrossRefGoogle Scholar
  7. 7.
    M. Tahir, F. Majid, S. Riaz, S. Naseem, Size dependent ferromagnetism in bismuth iron oxide nanoparticles for magnetoelectric applications. Advances in Civil, Environmental and Materials Research (2016)Google Scholar
  8. 8.
    X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang, X.G. Zhu, Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 89, 053115 (2006)CrossRefGoogle Scholar
  9. 9.
    J. Khajonrit, U. Wongpratat, P. Kidkhunthod, S. Pinitsoontorn, S. Maensiri, Effects of Co doping on magnetic and electrochemical properties of BiFeO3 nanoparticles. J. Magn. Magn. Mater. 449, 423–434 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Li, X. Fang, M. Cao, Thermal frequency shift and tunable microwave absorption in BiFeO3 family. Sci. Rep. 6, 24837 (2016)CrossRefGoogle Scholar
  11. 11.
    Y. Li, M. Cao, Enhanced electromagnetic properties and microwave attenuation of BiFeO3-BaFe7(MnTi)2.5O19 driven by multi-relaxation and strong ferromagnetic resonance. Mater. Des. 110, 99–104 (2016)CrossRefGoogle Scholar
  12. 12.
    F. Wen, N. Wang, F. Zhang, Enhanced microwave absorption properties in BiFeO3 ceramics prepared by high-pressure synthesis. Solid State Commun. 150, 1888–1891 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Yuan, Z. Hou, H. Yang, Y. Li, Y. Kang. W. Song, H. Jin, X. Fang, M. Cao, High dielectric loss and microwave absorption behavior of multiferroic BiFeO3 ceramic. Ceram. Int. 39, 7241–7246 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Kang, M. Cao, J. Yuan, X. Shi, Microwave absorption properties of multiferroic BiFeO3 nanoparticles. Mater. Lett. 63, 1344–1346 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Ahmadzadeh, A. Ataie, E. Mostafavi, The effects of mechanical activation energy on the solid-state synthesis process of BiFeO3. J. Alloys Compd. 622, 548–556 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Roy, R. Gupta, A. Garg, Multiferroic Memories. Adv. Condens. Matter Phys.  https://doi.org/10.1155/2012/926290(2012)Google Scholar
  17. 17.
    F.M. Idris, M. Hashim, I. Ismayadi, I.R. Idza, M. Manap, M.S.E. Shafie, Broadening of EM energy-absorption frequency band by micrometer-to-nanometer grain size reduction in NiZn ferrite. IEEE Trans. Magn. 49, 5475–5479 (2013)CrossRefGoogle Scholar
  18. 18.
    M.K. Tehrania, A. Ghasemi, M. Moradi, R.S. Alam, Wideband electromagnetic wave absorber using doped barium hexaferrite in Ku-band. J. Alloys Compd. 509, 8398–8400 (2011)CrossRefGoogle Scholar
  19. 19.
    G.F. Cheng, Y.J. Ruan, W. Liu, X.S. Wu, Effect of temperature variation on the phase transformation in the reaction sintering of BiFeO3 ceramics. Mater. Lett. 143, 330–332 (2015)CrossRefGoogle Scholar
  20. 20.
    N.S. Sowmya, A. Srinivas, P. Suresh, A. Shukla, S.V. Kamat, Synthesis and study of structural, magnetic and microwave absorption properties in multiferroic BiFeO3 electroceramic. J. Mater. Sci. Electron. 26, 5368–5372 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Yan, M. Gomi, T. Hattori, T. Yokota, H. Song, Effect of excess Bi on structure and ferroelectric properties of polycrystalline BiFeO3 thin film. Thin Solid Films 542, 150–154 (2013)CrossRefGoogle Scholar
  22. 22.
    K.S. Nalwa, A. Garg, Phase evolution, magnetic and electrical properties in Sm-doped bismuth ferrite. J. Appl. Phys. 103, 044101 (2008)CrossRefGoogle Scholar
  23. 23.
    D.L. Zhang, Processing of advanced materials using high-energy mechanical milling. Prog. Mater Sci. 49, 537–560 (2004)CrossRefGoogle Scholar
  24. 24.
    S.V. Kalinin, M.R. Suchomel, P.K. Davies, D.A. Bonnell, Potential and impedance imaging of polycrystalline BiFeO3 ceramics. J. Am. Ceram. Soc. 85(12), 3011–3017 (2002)CrossRefGoogle Scholar
  25. 25.
    D. Maurya, H. Thota, K.S. Nalwa, A. Garg, BiFeO3 ceramics synthesized by mechanical activation assisted versus conventional solid-state-reaction process: a comparative study. J. Alloys Compd. 477, 780–784 (2009)CrossRefGoogle Scholar
  26. 26.
    A. Santos, L.F. Cótica, S.N. De Medeiros, A. Paesano Jr., A.A. Coelho, S. Gama, M.Z. Venet, D. Garcia, J.A. Eiras, Structural, microstructural and magnetic properties of the high-energy ball milled BiFeO3 and BiFe0.95Mn0.05O3 ferroelectromagnetic compounds. Ferroelectrics 338, 1 233–239 (2006)CrossRefGoogle Scholar
  27. 27.
    G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21(24), 2463–2485 (2009)CrossRefGoogle Scholar
  28. 28.
    W. Mao, W. Chen, X. Wang, Y. Zhu, Y. Ma, H. Xue, L. Chu, J. Yang, X. Li, W. Huang, Influence of Eu and Sr co-substitution on multiferroic properties of BiFeO3. Ceram. Int. 42, 12838–12842 (2016)CrossRefGoogle Scholar
  29. 29.
    R.M. Zahari, A.H. Shaari, Z. Abbas, H. Baqiah, S.K. Chen, K.P. Lim, M.M. Awang Kechik, Simple preparation and characterization of bismuth ferrites nanoparticles by thermal treatment method. J. Mater. Sci. Electron. 28, 17932–17938 (2017)CrossRefGoogle Scholar
  30. 30.
    N. Rodziah, M. Hashim, I.R. Idza, I. Ismayadi, A.N. Hapishah, M.A. Khamirul, Dependence of developing magnetic hysteresis characteristics on stages of evolving microstructure in polycrystalline yttrium iron garnet. Appl. Surf. Sci. 258, 2679–2685 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Qiua, M. Gu, H. Shen, Microwave absorption properties of Al- and Cr-substituted M-type barium hexaferrite. J. Magn. Magn. Mater. 295, 263–268 (2005)CrossRefGoogle Scholar
  32. 32.
    H. Bea, M. Bibes, A. Barthelemy, K. Bouzehouane, E. Jacquet, A. Khodan, J.P. Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson, M. Viret, Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl. Phys. Lett. 87, 072508 (2005)CrossRefGoogle Scholar
  33. 33.
    M. Jamalian, A. Ghasemi, E. Paimozd, A comparison of the magnetic and microwave absorption properties of Mn-Sn-Ti substituted strontium ferrite with and without multiwalled carbon nanotube. Curr. Appl. Phys. 14, 909–915 (2014)CrossRefGoogle Scholar
  34. 34.
    S.B. Waje, M. Hashim, W.D.W. Yusoff, Z. Abbas, Room temperature measurements of physical and magnetic characteristics of polycrystalline material prepared using mechanically alloyed nanoparticles. Aust. J. Basic Appl. Sci. 3, 2716–2723 (2009)Google Scholar
  35. 35.
    F.M. Idris, M. Hashim, Z. Abbas, I. Ismail, R. Nazlan, I.R. Ibrahim, Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies. J. Magn. Magn. Mater. 405, 197–208 (2016)CrossRefGoogle Scholar
  36. 36.
    A. Ghasemi, A. Hossienpour, A. Morisako, A. Saatchi, M. Salehi, Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite. J. Magn. Magn. Mater. 302, 429–435 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Materials Synthesis and Characterization Laboratory, Institute of Advanced TechnologyUniversiti Putra Malaysia (UPM)SerdangMalaysia
  2. 2.Department of Physics, Faculty of ScienceUniversiti Putra Malaysia (UPM)SerdangMalaysia
  3. 3.Microwave Research InstituteUniversiti Teknologi MARAShah AlamMalaysia

Personalised recommendations