Advertisement

Ni doped ZrTiO4 ceramics for dielectric resonator applications

  • Naadia Akhtar
  • Hafiz Muhammad Rafique
  • Shahid Atiq
  • Sana Aslam
  • Aamir Razaq
  • Murtaza Saleem
Article
  • 70 Downloads

Abstract

Structural, morphological, dielectric and electrical properties of Zr1−xNixTiO4 (x = 0, 0.05, 0.10, 0.15 and 0.2) are studied in this work using X-ray diffraction, field emission scanning electron microscopy and impedance spectroscopic measurements, respectively. The compositions were prepared using sol–gel auto-combustion method and observed to possess the orthorhombic structure with a space group, Pnab 60. The Fourier transform infrared spectroscopy inveterated that the combustion was complete. Field emission scanning electron microscopic study reveals that the homogeneity and density of the particles increase with increasing doping concentration. Grain size increases with increasing Ni contents i.e. from 0.25 to 0.5 µm, mostly depicting irregular morphology. Energy dispersive X-ray technique confirmed the presence of Ni, Zr, Ti and O in the prepared materials. Dielectric parameters i.e. dielectric constant and loss decreases with increasing frequency. Conductivity increases with increasing Ni contents and with the increase in frequency. Complex impedance plot shows a single semicircle corresponding to ZrTiO4 and Ni-doped ZrTiO4 which determines the dominancy of grain boundary resistance at low frequency. Electric modulus reveals the real dielectric relaxation process.

Notes

Acknowledgements

This research has been fully funded by HEC (Higher education commission of Pakistan) in the framework of indigenous 5000 PhD fellowship program.

References

  1. 1.
    K. Rani, D. Saluja, A review on design and applications of nyquist filter. IJACEE 02(03), 33–37 (2017)Google Scholar
  2. 2.
    I.M. Reaney, D. Iddles, J. Am. Ceram. Soc. 89, 2063 (2006)Google Scholar
  3. 3.
    L.H. Ahrens, Geochim. Cosmochim. Acta 2, 155 (1952)CrossRefGoogle Scholar
  4. 4.
    T. Dietl, H.Ohno, Phys. E. 9, 185 (2001)CrossRefGoogle Scholar
  5. 5.
    Q.R. Marksteiner, M.B. Treiman, C.-F. Chen, W.B. Haynes, M.T. Reiten, D. Dalmas, E. Pulliam, Rev. Sci. Instrum. 88, 064704 (2017)CrossRefGoogle Scholar
  6. 6.
    Z. Ahmad, S. Atiq, S.K. Abbas, S.M. Ramay, S. Riaz, S. Naseem, Ceram. Int. 42, 18271 (2016)CrossRefGoogle Scholar
  7. 7.
    K. Wakino, K. Minai, H. Tamura, J. Am. Ceram. Soc. 67, 278 (1984)CrossRefGoogle Scholar
  8. 8.
    R. Kumar, K. Asokan, S. Patnaik, B. Birajdar, in AIP Conference Proceedings, (AIP Publishing, 2016), p. 030025Google Scholar
  9. 9.
    M. Dong, H. Wang, L. Shen, Y. Ye, C. Ye, Y. Wang, J. Zhang, Y. Jiang, J. Mater. Sci. Mater. Electron. 23, 174 (2012)CrossRefGoogle Scholar
  10. 10.
    T. Busani, R. Devine, P. Gonon, ECS Trans. 1, 331 (2006)CrossRefGoogle Scholar
  11. 11.
    S. Hirano, T. Hayashi, A. Hattori, J. Am. Ceram. Soc. 74, 1320 (1991)CrossRefGoogle Scholar
  12. 12.
    A. Maqbool, A. Hussain, J.U. Rahman, J.K. Park, T.G. Park, J.S. Song, M.H. Kim, Phys. Status Solidi A 211, 1709 (2014)CrossRefGoogle Scholar
  13. 13.
    H. Guo, J. Guo, A. Baker, C.A. Randall, J. Am. Ceram. Soc. 100, 491 (2017)CrossRefGoogle Scholar
  14. 14.
    D.J. Rani, A.G. Kumar, T.S. Rao, J. Alloys Compd. 694, 694 (2017)CrossRefGoogle Scholar
  15. 15.
    L.J. Bercmans, T. Sornakumar, A.H. Kumar, G. Siva, G. Venkatesh, Nano Hybrids Composites (Trans Tech Publications, Switzerland, 2017), pp. 88–95Google Scholar
  16. 16.
    T. Badapanda, S. Sarangi, B. Behera, S. Parida, S. Saha, T.P. Sinha, R. Ranjan, P.K. Sahoo, J. Alloys Compd. 645, 586 (2015)CrossRefGoogle Scholar
  17. 17.
    K. Bian, Q. Gu, K. Zhu, R. Zhu, J. Wang, J. Liu, J. Qiu, J. Mater. Sci. Mater. Electron. 27, 8573 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Amin, H.M. Rafique, M. Yousaf, S.M. Ramay, M. Saleem, S.K. Abbas, S. Atiq, J. Mater. Sci. Mater. Electron. 28, 17234 (2017)CrossRefGoogle Scholar
  19. 19.
    J. Macan, A. Gajović, D. Dekanić, H. Ivanković, 10th International Conference and Exhibition of the European Ceramic Society, (Berlin, 2007)Google Scholar
  20. 20.
    M. Leoni, M. Viviani, G. Battilana, A.M. Fiorello, M. Viticoli, J. Eur. Ceram. Soc. 21, 1739 (2001)CrossRefGoogle Scholar
  21. 21.
    G. Štefanić, M. Didović, S. Musić, J. Mol. Struct. 834, 435 (2007)Google Scholar
  22. 22.
    Q.A. Islam, S. Nag, R.N. Basu, Trans. Indian Ceram. Soc. 75, 25 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Bianco, M. Paci, R. Freer, J. Eur. Ceram. Soc. 18, 1235 (1998)CrossRefGoogle Scholar
  24. 24.
    G.M. Mustafa, S. Atiq, S.K. Abbas, S. Riaz, S. Naseem, Ceram. Int. 44, 2170–2177 (2017)Google Scholar
  25. 25.
    C.G. Koops, Phys. Rev. 83, 121 (1951)CrossRefGoogle Scholar
  26. 26.
    K.W. Wagner, Ann. Phys. 40, 817 (1913)CrossRefGoogle Scholar
  27. 27.
    N. Akhtar, H.M. Rafique, S. Atiq, S. Aslam, A. Razaq, M. Saleem, Ceram. Int. 44, 6705 (2018)CrossRefGoogle Scholar
  28. 28.
    B. Tiwari, R.N.P. Choudhary, IEEE Trans. Dielectr. Electr. Insul. 22, 3046 (2015)CrossRefGoogle Scholar
  29. 29.
    K.C.V. Rajulu, B. Tilak, K.S. Rao, Am. J. Mat. Sci. 2, 15 (2012)CrossRefGoogle Scholar
  30. 30.
    S.K. Abbas, S. Atiq, S. Riaz, S.M. Ramay, S. Naseem, Mater. Chem. Phys. 200, 128 (2017)CrossRefGoogle Scholar
  31. 31.
    R. Gupta, S. Verma, V. Singh, K, Bamzai K, J. Ceram. 9, 1–9 (2015)Google Scholar
  32. 32.
    J. Hassan, F.M. Yen, M. Hashim, Z. Abbas, Z.A. Wahab, W.M.D.W. Yusoff, A. Zakaria, Ionics 13, 219 (2007)CrossRefGoogle Scholar
  33. 33.
    L. Solymar, D. Walsh, R.R. Syms, Electrical Properties of Materials (Oxford University Press, Oxford, 2014)Google Scholar
  34. 34.
    G.G. Raju, Dielectrics in Electric Fields (CRC press, New York, 2016)Google Scholar
  35. 35.
    D. Ravinder, K.V. Kumar, Bull. Mater. Sci. 24, 505 (2001)CrossRefGoogle Scholar
  36. 36.
    K.P. Priyanka, J. Sunny, J Basic Appl Phys 2, 105 (2013)Google Scholar
  37. 37.
    M. Amin, H.M. Rafique, M. Yousaf, S.M. Ramay, S. Atiq, J. Mater. Sci. Mater. Electron. 27, 11003 (2016)CrossRefGoogle Scholar
  38. 38.
    P.S. Anantha, K. Hariharan, Mater. Sci. Eng. B 121, 12 (2005)CrossRefGoogle Scholar
  39. 39.
    S. Demirezen, A. Kaya, S.A. Yerişkin, M. Balbaşı, İ Uslu, Results Phys. 6, 180 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of the PunjabLahorePakistan
  2. 2.Centre of Excellence in Solid State PhysicsUniversity of the PunjabLahorePakistan
  3. 3.Department of PhysicsCOMSATS Institute of Information TechnologyLahorePakistan
  4. 4.Department of Physics, School of Science and Engineering (SSE)Lahore University of Management Sciences (LUMS)LahorePakistan

Personalised recommendations