Advertisement

Facile fabrication of CeO2–TiO2 thin films via solution based CVD and their photoelectrochemical studies

  • Muhammad Ali Ehsan
  • Rabia Naeem
  • Abdul Rehman
  • Abbas Saeed Hakeem
  • Muhammad Mazhar
Article
  • 13 Downloads

Abstract

Present work reports a single step deposition protocol for the growth of robust, durable and homogenous CeO2–TiO2 composite thin films for the investigation of their photoelectrochemical (PEC) properties. The transparent methanol solution of triacetatocerium (III) hydrate and of tetraisopropoxytitanium (IV) precursors in 1:1 mol ratio was employed in aerosol assisted chemical vapor deposition (AACVD) on FTO substrates at temperatures of 550 and 600 °C in the ambient air. These precursors were converted into their trifluroacetates in situ, under these deposition conditions, for their compatibility in the AACVD procedure. XRD, SEM, EDX and XPS analyses verified the formation of uniformly dispersed crystalline CeO2 and TiO2 phases in spherical shaped morphologies and a direct bandgap of 2.6 eV was measured from the UV–Visible spectrophotometry. PEC studies of the composite films revealed that the heterojunction developed between n-type CeO2 and n-type TiO2 facilitated the separation and transportation of electrons and holes, leading to a promising photocurrent density of about 1.0 mA cm− 2 and prolonged photo stability measured under one-sun illumination (100 mW cm− 2) which is up to 60 min at 0.7 V versus Ag/AgCl. This behavior was further confirmed from electrochemical impedance spectroscopy and Bode phase angle measurements. It was also shown that the films fabricated at 550 °C has higher porosity leading to larger interface contacts and thus was able to generate higher photo activity.

Notes

Acknowledgements

The authors gratefully acknowledge High-Impact Research scheme Grant # UM.C/625/1/HIR/242, UMRG scheme Grant # RP007-13AET and HIR-MOHE Grant # UM.S/P/628/3SC21 of the University of Malaya, Malaysia, for funding. AR acknowledge the support of KFUPM start up project # SR151005. The support of CENT-KFUPM is gratefully acknowledged.

Supplementary material

10854_2018_9445_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1195 KB)

References

  1. 1.
    X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110, 6503–6570 (2010)CrossRefGoogle Scholar
  2. 2.
    S.S. Mao, S. Shen, Nat. Photonics 7, 944–946 (2013)CrossRefGoogle Scholar
  3. 3.
    H. Zhang, X. Liu, Y. Li, Q. Sun, Y. Wang, B.J. Wood, P. Liu, D. Yang, H. Zhao, J. Mater. Chem. 22, 2465–2472 (2012)CrossRefGoogle Scholar
  4. 4.
    K.-N.P. Kumar, K. Keizer, A. Burggraaf, T. Okubo, H. Nagamoto, S. Morooka, Nature 358, 48–51 (1992)CrossRefGoogle Scholar
  5. 5.
    M.A. Mansoor, M. Mazhar, A. Pandikumar, H. Khaledi, H.N. Ming, Z. Arifin, Int. J. Hydrogen Energy 41, 9267–9275 (2016)CrossRefGoogle Scholar
  6. 6.
    M.A. Mansoor, M. Mazhar, V. McKee, Z. Arifin, Polyhedron 75, 135–140 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Gun, G.Y. Song, V.H.V. Quy, J. Heo, H. Lee, K.-S. Ahn, S.H. Kang, ACS Appl. Mater. Interfaces 7, 20292–20303 (2015)CrossRefGoogle Scholar
  8. 8.
    J.-S. Yang, W.-H. Lin, C.-Y. Lin, B.-S. Wang, J.-J. Wu, ACS Appl. Mater. Interfaces 7, 13314–13321 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Ho-Kimura, S.J. Moniz, A.D. Handoko, J. Tang, J. Mater. Chem. A 2, 3948–3953 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J. Guo, A.L. Briseno, P. Yang, ACS Central Sci. 2, 80–88 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Radecka, A. Wnuk, A. Trenczek-Zajac, K. Schneider, K. Zakrzewska, Int. J. Hydrogen Energy 40, 841–851 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Gong, F. Meng, X. Yang, Z. Fan, H. Li, J. Alloy. Compd. 689, 606–616 (2016)CrossRefGoogle Scholar
  13. 13.
    F. Meng, L. Wang, J. Cui, J. Alloy. Compd. 556, 102–108 (2013)CrossRefGoogle Scholar
  14. 14.
    L. Wang, F. Meng, Mater. Res. Bull. 48, 3492–3498 (2013)CrossRefGoogle Scholar
  15. 15.
    L. Wang, F. Meng, K. Li, F. Lu, Appl. Surf. Sci. 286, 269–274 (2013)CrossRefGoogle Scholar
  16. 16.
    H.Y. Kim, M.S. Hybertsen, P. Liu, Nano Lett. 17, 348–354 (2017)CrossRefGoogle Scholar
  17. 17.
    R. Verma, S.K. Samdarshi, J. Singh, J. Phys. Chem. C 119, 23899–23909 (2015)CrossRefGoogle Scholar
  18. 18.
    R. Fiorenza, M. Bellardita, T. Barakat, S. Scirè, L. Palmisano, J. Photochem. Photobiol. A 352, 25–34 (2018)CrossRefGoogle Scholar
  19. 19.
    K.-H. Chung, D.-C. Park, Catal. Today 30, 157–162 (1996)CrossRefGoogle Scholar
  20. 20.
    J.S. Valente, F. Tzompantzi, J. Prince, Appl. Catal. B 102, 276–285 (2011)CrossRefGoogle Scholar
  21. 21.
    A. Zhang, J. Zhang, Mater. Lett. 63, 1939–1942 (2009)CrossRefGoogle Scholar
  22. 22.
    S. Song, L. Xu, Z. He, J. Chen, X. Xiao, B. Yan, Environ. Sci. Technol. 41, 5846–5853 (2007)CrossRefGoogle Scholar
  23. 23.
    S. Hu, F. Zhou, L. Wang, J. Zhang, Catal. Commun. 12, 794–797 (2011)CrossRefGoogle Scholar
  24. 24.
    L. Li, B. Yan, J. Non-Cryst. Solids 355, 776–779 (2009)CrossRefGoogle Scholar
  25. 25.
    R. Liu, H. Ye, X. Xiong, H. Liu, Mater. Chem. Phys. 121, 432–439 (2010)CrossRefGoogle Scholar
  26. 26.
    V. Štengl, S. Bakardjieva, N. Murafa, Mater. Chem. Phys. 114, 217–226 (2009)CrossRefGoogle Scholar
  27. 27.
    J. Xiao, T. Peng, R. Li, Z. Peng, C. Yan, J. Solid State Chem. 179, 1161–1170 (2006)CrossRefGoogle Scholar
  28. 28.
    Z. Liu, B. Guo, L. Hong, H. Jiang, J. Phys. Chem. Solids 66, 161–167 (2005)CrossRefGoogle Scholar
  29. 29.
    J. Fang, H. Bao, B. He, F. Wang, D. Si, Z. Jiang, Z. Pan, S. Wei, W. Huang, J. Phys. Chem. C 111, 19078–19085 (2007)CrossRefGoogle Scholar
  30. 30.
    L. Zhang, J. Zhang, H. Jiu, X. Zhang, M. Xu, J. Mater. Sci. 50, 5228–5237 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Luo, T.-D. Nguyen-Phan, A.C. Johnston-Peck, L. Barrio, S. Sallis, D.A. Arena, S. Kundu, W. Xu, L.F. Piper, E.A. Stach, J. Phys. Chem. C 119, 2669–2679 (2015)Google Scholar
  32. 32.
    B. Liu, X. Zhao, N. Zhang, Q. Zhao, X. He, J. Feng, Surf. Sci. 595, 203–211 (2005)CrossRefGoogle Scholar
  33. 33.
    B. Jiang, S. Zhang, X. Guo, B. Jin, Y. Tian, Appl. Surf. Sci. 255, 5975–5978 (2009)CrossRefGoogle Scholar
  34. 34.
    U. Qureshi, C.W. Dunnill, I.P. Parkin, Appl. Surf. Sci. 256, 852–856 (2009)CrossRefGoogle Scholar
  35. 35.
    M.A. Ehsan, A.S. Hakeem, H. Khaledi, M. Mazhar, M.M. Shahid, A. Pandikumar, N.M. Huang, RSC Adv. 5, 103852–103862 (2015)CrossRefGoogle Scholar
  36. 36.
    M.A. Ehsan, H. Khaledi, Z. Arifin, M. Mazhar, Polyhedron 98, 190–195 (2015)CrossRefGoogle Scholar
  37. 37.
    M.A. Ehsan, H. Khaledi, A. Pandikumar, N.M. Huang, Z. Arifin, M. Mazhar, J. Solid State Chem. 230, 155–162 (2015)CrossRefGoogle Scholar
  38. 38.
    M.A. Ehsan, H. Khaledi, A. Pandikumar, P. Rameshkumar, N.M. Huang, Z. Arifin, M. Mazhar, New J. Chem. 39, 7442–7452 (2015)CrossRefGoogle Scholar
  39. 39.
    M. Mansoor, K. Munawar, S. Lim, N.-M. Huang, M. Mazhar, M. Akhtar, M. Siddique, New J. Chem. 41, 7322–7330 (2017)CrossRefGoogle Scholar
  40. 40.
    K. Munawar, M.A. Mansoor, W.J. Basirun, M. Misran, N.M. Huang, M. Mazhar, RSC Adv. 7, 15885–15893 (2017)CrossRefGoogle Scholar
  41. 41.
    F. Ghodsi, F. Tepehan, G. Tepehan, Surf. Sci. 601, 4497–4501 (2007)CrossRefGoogle Scholar
  42. 42.
    M.A. Ehsan, R. Naeem, V. McKee, A.S. Hakeem, M. Mazhar, Sol. Energy Mater. Sol. Cells 161, 328–337 (2017)CrossRefGoogle Scholar
  43. 43.
    C. Wang, C. Shao, X. Zhang, Y. Liu, Inorg. Chem. 48, 7261–7268 (2009)CrossRefGoogle Scholar
  44. 44.
    Z. Zhang, C. Shao, L. Zhang, X. Li, Y. Liu, J. Colloid Interface Sci. 351, 57–62 (2010)CrossRefGoogle Scholar
  45. 45.
    Y. Tan, S. Zhang, R. Shi, W. Wang, K. Liang, Int. J. Hydrogen Energy 41, 5437–5444 (2016)CrossRefGoogle Scholar
  46. 46.
    Z. Fan, F. Meng, J. Gong, H. Li, Y. Hu, D. Liu, Mater. Lett. 175, 36–39 (2016)CrossRefGoogle Scholar
  47. 47.
    S.A. Ansari, M.M. Khan, M.O. Ansari, S. Kalathil, J. Lee, M.H. Cho, RSC Adv. 4, 16782–16791 (2014)CrossRefGoogle Scholar
  48. 48.
    J. Van Elp, R. Potze, H. Eskes, R. Berger, G. Sawatzky, Phys. Rev. B 44, 1530 (1991)CrossRefGoogle Scholar
  49. 49.
    M.A. Mansoor, M. Mazhar, M. Ebadi, H.N. Ming, M.A.M. Teridi, L.K. Mun, New J. Chem. 40, 5177–5184 (2016)CrossRefGoogle Scholar
  50. 50.
    V. Markoulaki, Ι,I.T. Papadas, I. Kornarakis, G.S. Armatas, Nanomaterials, 5, 1971–1984 (2015)CrossRefGoogle Scholar
  51. 51.
    R. Verma, S. Samdarshi, J. Singh, J. Phys. Chem. C 119, 23899–23909 (2015)CrossRefGoogle Scholar
  52. 52.
    M. Mansoor, N. Huang, V. McKee, T.N. Peiris, K. Wijayantha, Z. Arifin, M. Misran, M. Mazhar, Sol. Energy Mater. Sol. Cells 137, 258–264 (2015)CrossRefGoogle Scholar
  53. 53.
    H. Pan, S.H. Ko, C.P. Grigoropoulos, J. Heat Transfer 130, 092404 (2008)CrossRefGoogle Scholar
  54. 54.
    H. Liu, S. Cheng, M. Wu, H. Wu, J. Zhang, W. Li, C. Cao, J. Phys. Chem. A 104, 7016–7020 (2000)CrossRefGoogle Scholar
  55. 55.
    J. Yu, Y. Wang, W. Xiao, J. Mater. Chem. A 1, 10727–10735 (2013)CrossRefGoogle Scholar
  56. 56.
    C. Karunakaran, P. Gomathisankar, ACS Sustain. Chem. Eng. 1, 1555–1563 (2013)CrossRefGoogle Scholar
  57. 57.
    D. Wang, D. Astruc, Chem. Soc. Rev. 46, 816–854 (2017)CrossRefGoogle Scholar
  58. 58.
    M. Aslam, I.M. Ismail, S. Chandrasekaran, T. Almeelbi, A. Hameed, RSC Adv. 4, 49347–49359 (2014)CrossRefGoogle Scholar
  59. 59.
    N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A.I. Minett, J. Chen, ACS Appl. Mater. Interfaces 4, 3718–3723 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Muhammad Ali Ehsan
    • 1
  • Rabia Naeem
    • 2
  • Abdul Rehman
    • 3
  • Abbas Saeed Hakeem
    • 1
  • Muhammad Mazhar
    • 4
  1. 1.Center of Research Excellence in Nanotechnology (CENT)King Fahd University of Petroleum & MineralsDhahranSaudi Arabia
  2. 2.Department of ChemistryGovernment College UniversityLahorePakistan
  3. 3.Department of ChemistryKing Fahd University of Petroleum & MineralsDhahranSaudi Arabia
  4. 4.Department of Environmental SciencesFatima Jinnah Women UniversityRawalpindiPakistan

Personalised recommendations