Advertisement

Spark plasma sintering technique: an alternative method to enhance ZT values of Sb doped Cu2SnSe3

  • K. Shyam Prasad
  • Ashok Rao
  • Ruchi Bhardwaj
  • Kishor Kumar Johri
  • Chia-Chi Chang
  • Yung-Kang Kuo
Article

Abstract

Sb doped Cu2Sn1−xSbxSe3 (0 ≤ x ≤ 0.04) compounds have been fabricated by spark plasma sintering technique for the investigation of their thermoelelctric properties in the temperature range 10–400 K. The conduction mechanism of electrical resistivity reveals that small polaron hopping model is valid in the high-temperature regime and variable range hopping model in low-temperature regime. The positive values of Seebeck coefficient (S) for Cu2Sn1−xSbxSe3 (0 ≤ x ≤ 0.04) samples in the entire temperature range indicates that the majority charge carriers are holes. The electronic thermal conductivity (κe) was estimated by Wiedmann-Franz law and found that the contribution of κe to the total κ is < 1%, suggesting that the heat conduction for presently studied Cu2Sn1−xSbxSe3 (0 ≤ x ≤ 0.04) samples is mainly associated to the lattice phonons. The highest ZT value for the Cu2Sn0.96Sb0.04Se3 sample was 0.044 at 400 K, which is approximately four times that of the Cu2SnSe3 sample and an order of magnitude larger than the samples prepared by the conventional solid-state method. Also, the thermoelectric compatibility factor of Cu2Sn0.96Sb0.04Se3 was found to be about 1 per V.

Notes

Acknowledgements

The present work funded by Manipal University (Grant No. MU/HR/E-Chair/2016) and Council of Scientific & Industrial Research (Grant No. 03(1409)/17/EMR-II). The thermal measurements are supported by the Ministry of Science and Technology of Taiwan under Grant No. MOST 106-2112-M-259-002-MY3 (YKK).

References

  1. 1.
    L.E. Bell, Cooling, Heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008)CrossRefGoogle Scholar
  2. 2.
    G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105 (2008)CrossRefGoogle Scholar
  3. 3.
    Z.G. Chen, G. Han, L. Yang, L. Cheng, J. Zou, Nanostructured thermoelectric materials: current research and future challenge. Prog. Nat. Sci. 22, 535 (2012)CrossRefGoogle Scholar
  4. 4.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554 (2008)CrossRefGoogle Scholar
  5. 5.
    Y. Pei, H. Wang, G.J. Snyder, Band engineering of thermoelectric materials. Adv. Mater. 24, 6125 (2012)CrossRefGoogle Scholar
  6. 6.
    K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414 (2012)CrossRefGoogle Scholar
  7. 7.
    D.T. Morelli, V. Jovovic, J.P. Heremans, Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett. 101, 16 (2008)CrossRefGoogle Scholar
  8. 8.
    O. Yamashita, S. Tomiyoshi, K. Makita, Bismuth telluride compounds with high thermoelectric figures of merit. J. Appl. Phys. 93, 368 (2003)CrossRefGoogle Scholar
  9. 9.
    E.J. Skoug, J.D. Cain, D.T. Morelli, Thermoelectric properties of the Cu2SnSe3–Cu2GeSe3 solid solution. J. Alloys Compd. 506, 18 (2010)CrossRefGoogle Scholar
  10. 10.
    B. Qu, M. Zhang, D. Lei, Y. Zeng, Y. Chen, L. Chen, Q. Li, Y. Wang, T. Wang, Ternary Cu2SnS3 cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity. Nanoscale 3, 3646 (2011)CrossRefGoogle Scholar
  11. 11.
    L.K. Samanta, On some properties of I2-IV-VI3 compounds. Phys. Status Solidi A 100, K93 (1987)CrossRefGoogle Scholar
  12. 12.
    P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. J. Phys. D Appl. Phys. 43, 215403 (2010)CrossRefGoogle Scholar
  13. 13.
    C. Goodman, R. Douglas, New semiconducting compounds of diamond type structure. Physica 20, 1107 (1954)CrossRefGoogle Scholar
  14. 14.
    X.Y. Shi, L. Xi, F. Jing, W. Zhang, L. Chen, Cu–Se bond network and thermoelectric compounds with complex diamondlike structure. Chem. Mater. 22, 6029 (2010)CrossRefGoogle Scholar
  15. 15.
    X. Lu, D. Morelli, J. Cain, Thermoelectric properties of Mn doped Cu2SnSe3. J. Electron. Mater. 41, 1554 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Fan, H. Liu, X. Shi, S. Bai, X. Shi, L. Chen, Investigation of thermoelectric properties of Cu2GaxSn1–xSe3 diamond-like compounds by hot pressing and spark plasma sintering. Acta Mater. 61, 4297 (2013)CrossRefGoogle Scholar
  17. 17.
    K.S. Prasad, B. Ashok Rao, S. Gahtori, A. Bathula, Dhar, The low and high temperature thermoelectric properties of Sb doped Cu2SnSe3. Mater. Res. Bull. 83, 160 (2016)CrossRefGoogle Scholar
  18. 18.
    Z. Shen, M. Johnsson, Z. Zhao, M. Nygren, Spark plasma sintering of alumina. J. Am. Ceram. Soc. 85, 1921 (2002)CrossRefGoogle Scholar
  19. 19.
    Z.A. Munir, D.V. Quach, M. Ohyanagi, Electric current activation of sintering: a review of the pulsed electric current sintering process. J. Am. Ceram. Soc. 94, 04210 (2011)CrossRefGoogle Scholar
  20. 20.
    R.S.S. Maki, S. Mitani, T. Mori, Effect of spark plasma sintering (SPS) on the thermoelectric properties of magnesium ferrite. Mater. Renew. Sustain. Energy. 6, 2 (2017)CrossRefGoogle Scholar
  21. 21.
    K.S. Prasad, A. Rao, N.S. Chauhan, R. Bhardwaj, A. Vishwakarma, K. Tyagi, Thermoelectric properties of p-type Sb doped Cu2SnSe3 near room and mid temperature apploications. Appl. Phys. A 124, 98 (2018)CrossRefGoogle Scholar
  22. 22.
    Y.K. Kuo, B. Ramachandran, C.S. Lue, Optimization of thermoelectric performance of SrSi2-based alloys via the modification in band structure and phonon-point-defect scattering. Front. Chem. 2, 106 (2014)CrossRefGoogle Scholar
  23. 23.
    S. Yoon, O.-J. Kwon, S. Ahn, J.-Y. Kim, H. Koo, S.-H. Bae, J.-Y. Cho, J.-S. Kim, C. Park, The effect of grain size and density on the thermoelectric properties of Bi2Te3-PbTe Compounds. J. Electron. Mater. 42, 3390 (2013)CrossRefGoogle Scholar
  24. 24.
    K.S. Prasad, A. Rao, K. Tyagi, N. Singh Chauhan, B. Gahtori, S. Bathula, A. Dhar, Enhanced thermoelectric performance of Pb doped Cu2SnSe3 synthesized employing spark plasma sintering. Physica B: Condens. Matter. 512, 39 (2017)CrossRefGoogle Scholar
  25. 25.
    B.J. Christopher, P.D. Ashok Rao, G.S. Babu, Okram, A systematic study on the effect of electron beam irradiation on structural, electrical, thermo-electric power and magnetic property of LaCoO3. J. Magn. Magn. Mater. 397, 145 (2016)CrossRefGoogle Scholar
  26. 26.
    B.S. Nagaraj, P.D. Ashok Rao, G.S. Babu, Okram, Structural, electrical, magnetic and thermal properties of Gd1-xSrxMnO3 (0.2 ≤ x ≤ 0.5) manganites. Phys. B 479, 10 (2015)CrossRefGoogle Scholar
  27. 27.
    R. Chetty, M. Falmbigl, P. Rogl, P. Heinrich, E. Royanian, E. Bauer, S. Suwas, R.C. Mallik, The effect of multisubstitution on the thermoelectric properties of chalcogenide-based Cu2.1Zn0.9Sn1–xInxSe4 (0 ≤ x ≤ 0.1). Phys. Status Solidi A 210, 2417 (2013)CrossRefGoogle Scholar
  28. 28.
    Y.H. Bhaskar, W.M. Pai, C.L. Wu, C.J. Chang, Liu, Low thermal conductivity and enhanced thermoelectric performance of nanostructured Al-doped ZnTe. Ceram. Int. 42, 1070 (2016)CrossRefGoogle Scholar
  29. 29.
    D. Li, X.Y. Qin, Thermoelectric properties of CuSbSe2 and its doped compounds by Ti and Pb at low temperatures from 5 to 310 K. J. Appl. Phys. 100, 023713 (2006)CrossRefGoogle Scholar
  30. 30.
    M.H. Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M.H. Hassan, M.B.A. Bashir, M. Mohamad, A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew. Sust. Energ. Rev. 30, 337 (2014)CrossRefGoogle Scholar
  31. 31.
    H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 3, 041506 (2015)CrossRefGoogle Scholar
  32. 32.
    P.H. Ngan, D.V. Christensen, G.J. Snyder, L.T. Hung, S. Linderoth, N. Van Nong, N. Pryds, Towards high efficiency segmented thermoelectric unicouples. Phys. Status Solidi A 211, 9 (2014)CrossRefGoogle Scholar
  33. 33.
    G.J. Snyder, T.S. Ursell, Thermoelectic efficiency and compatibility. Phys. Rev. Lett. 91, 148301 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. Shyam Prasad
    • 1
  • Ashok Rao
    • 1
  • Ruchi Bhardwaj
    • 2
  • Kishor Kumar Johri
    • 2
  • Chia-Chi Chang
    • 3
  • Yung-Kang Kuo
    • 3
  1. 1.Department of Physics, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia
  2. 2.CSIR-Network of Institute for Solar EnergyCSIR-National Physical LaboratoryNew DelhiIndia
  3. 3.Department of PhysicsNational Dong-Hwa UniversityHualienTaiwan

Personalised recommendations