Advertisement

Microstructure and hardness of SAC305-xNi solder on Cu and graphene-coated Cu substrates

  • Yang Liu
  • Shengli Li
  • Hao Zhang
  • Hongming Cai
  • Fenglian Sun
  • Guoqi Zhang
Article
  • 99 Downloads

Abstract

This study investigated the interfacial reaction, the microstructure, and the hardness of the SAC305-xNi solder on both Cu and graphene-coated Cu (G–Cu) substrates. The experimental results indicate that the increase of Ni content in the solder leads to the roughness of the (Cu, Ni)6Sn5 IMC layer on Cu. In contrast, the growth of the (Cu, Ni)6Sn5 interfacial IMC, which results from increasing Ni addition, is significantly suppressed on G–Cu substrates. As the concentration of Ni ranges from 0 to 0.2 wt%, the microstructure of the solder bulks on Cu substrates shows slight changes. The hardness of the solder bulks in SAC305-Ni/Cu is similar to that in the SAC305/Cu solder joint. The amount of β-Sn rises and the eutectic area shrinks due to increasing Ni addition in the solder bulks on G–Cu substrates. Therefore, the solder bulks in the SAC305-Ni/G–Cu show lower hardness than that in the SAC305/G–Cu solder joint.

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 51604090), Natural Science Foundation of Heilongjiang Province (No. E2017050), and University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2015042).

References

  1. 1.
    J. Kim, A. Banks, Z. Xie, S.Y. Heo, P. Gutruf, J.W. Lee, S. Xu, K.I. Jang, F. Liu, G. Brown, Miniaturized flexible electronic systems with wireless power and near-field communication capabilities. Adv. Funct. Mater. 25, 4761–4767 (2015)CrossRefGoogle Scholar
  2. 2.
    N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12, 7 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Shtein, R. Nadiv, M. Buzaglo, O. Regev, Graphene-based hybrid composites for efficient thermal management of electronic devices. ACS Appl. Mater. Int. 7, 23725–23730 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Liu, F. Sun, L. Luo, C.A. Yuan, G. Zhang, Microstructure evolution and shear behavior of the solder joints for flip-chip LED on ENIG substrate. J. Electron. Mater. 44, 2450–2457 (2015)CrossRefGoogle Scholar
  5. 5.
    X. Ma, Y. Qian, F. Yoshida, Effect of La on the Cu–Sn intermetallic compound (IMC) growth and solder joint reliability. J. Alloys Compd. 334, 224–227 (2002)CrossRefGoogle Scholar
  6. 6.
    J.H. Pang, T. Low, B. Xiong, X. Luhua, C. Neo, Thermal cycling aging effects on Sn–Ag–Cu solder joint microstructure, IMC and strength. Thin Solid Films 462, 370–375 (2004)CrossRefGoogle Scholar
  7. 7.
    X. Deng, R. Sidhu, P. Johnson, N. Chawla, Influence of reflow and thermal aging on the shear strength and fracture behavior of Sn-3.5Ag solder/Cu joints. Metall. Mater. Trans. A 36, 55–64 (2005)CrossRefGoogle Scholar
  8. 8.
    K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, K. Tu, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability. J. Appl. Phys. 97, 024508 (2005)CrossRefGoogle Scholar
  9. 9.
    H.C. Pan, T.E. Hsieh, Diffusion barrier characteristics of electroless Co (W, P) thin films to lead-free SnAgCu solder. J. Electrochem. Soc. 158, P123–P129 (2011)CrossRefGoogle Scholar
  10. 10.
    H. Zou, Q. Zhu, Z. Zhang, Growth kinetics of intermetallic compounds and tensile properties of Sn–Ag–Cu/Ag single crystal joint. J. Alloys Compd. 461, 410–417 (2008)CrossRefGoogle Scholar
  11. 11.
    M.R. Adawiyah, O.S. Azlina, Comparative study on the isothermal aging of bare Cu and ENImAg surface finish for Sn-Ag-Cu solder joints. J. Alloys Compd. 740, 958–966 (2018)CrossRefGoogle Scholar
  12. 12.
    Y.H. Ko, J.D. Lee, T. Yoon, C.W. Lee, T.S. Kim, Controlling interfacial reactions and intermetallic compound growth at the interface of a lead-free solder joint with layer-by-layer transferred graphene. ACS Appl. Mater. Interfaces. 8, 5679–5686 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Tian, S. Li, J. Zhou, F. Xue, R. Cao, F. Wang, Effect of indium addition on interfacial IMC growth and bending properties of eutectic Sn-0.7Cu solder joints. J. Mater. Sci. Mater. Electron. 28, 16120–16132 (2017)CrossRefGoogle Scholar
  14. 14.
    B. Guo, A. Kunwar, N. Zhao, J. Chen, Y. Wang, H. Ma, Effect of Ag3Sn nanoparticles and temperature on Cu6Sn5 IMC growth in Sn-xAg/Cu solder joints. Mater. Res. Bull. 99, 239–248 (2018)CrossRefGoogle Scholar
  15. 15.
    J. Tian, P. Dai, X. Li, Interfacial reactions between Cu and Zn20Sn solder doped with minor RE. J. Mater. Sci. Mater. Electron. 28, 17185–17192 (2017)CrossRefGoogle Scholar
  16. 16.
    G. Chen, L. Liu, V.V. Silberschmidt, C. Liu, F. Wu, Y. Chan, Microstructural evolution of 96.5Sn-3Ag-0.5 Cu lead free solder reinforced with nickel-coated graphene reinforcements under large temperature gradient. J. Mater. Sci. Mater. Electron. (2018).  https://doi.org/10.1007/s10854-017-8489-7 Google Scholar
  17. 17.
    F. Wang, X. Ma, Y. Qian, Improvement of microstructure and interface structure of eutectic Sn–0.7 Cu solder with small amount of Zn addition. Scr. Mater. 53, 699–702 (2005)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, Y. Lin, C. Tu, C. Kao, Effects of minor Fe, Co, and Ni additions on the reaction between SnAgCu solder and Cu. J. Alloys Compd. 478, 121–127 (2009)CrossRefGoogle Scholar
  19. 19.
    Y. Liu, J. Meerwijk, L. Luo, H. Zhang, F. Sun, C.A. Yuan, G. Zhang, Formation and evolution of intermetallic layer structures at SAC305/Ag/Cu and SAC0705-Bi-Ni/Ag/Cu solder joint interfaces after reflow and aging. J. Mater. Sci. Mater. Electron. 25, 4954–4959 (2014)CrossRefGoogle Scholar
  20. 20.
    X. Hu, Y. Chan, K. Zhang, K. Yung, Effect of graphene doping on microstructural and mechanical properties of Sn-8Zn-3Bi solder joints together with electromigration analysis. J. Alloys Compd. 580, 162–171 (2013)CrossRefGoogle Scholar
  21. 21.
    L. Xu, L. Wang, H. Jing, X. Liu, J. Wei, Y. Han, Effects of graphene nanosheets on interfacial reaction of Sn–Ag–Cu solder joints. J. Alloys Compd. 650, 475–481 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Liu, F. Sun, H. Zhang, P. Zou, Solderability, IMC evolution, and shear behavior of low-Ag Sn0.7Ag0.5Cu-BiNi/Cu solder joint. J. Mater. Sci. Mater. Electron. 23, 1705–1710 (2012)CrossRefGoogle Scholar
  23. 23.
    F. Cheng, F. Gao, H. Nishikawa, T. Takemoto, Interaction behavior between the additives and Sn in Sn-3.0Ag-0.5 Cu-based solder alloys and the relevant joint solderability. J. Alloys Compd. 472, 530–534 (2009)CrossRefGoogle Scholar
  24. 24.
    S. Chen, L. Brown, M. Levendorf, W. Cai, S.-Y. Ju, J. Edgeworth, X. Li, C.W. Magnuson, A. Velamakanni, R.D. Piner, Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5, 1321–1327 (2011)CrossRefGoogle Scholar
  25. 25.
    Y. Huang, Z. Xiu, G. Wu, Y. Tian, P. He, Sn-3.0Ag-0.5Cu nanocomposite solders reinforced by graphene nanosheets. J. Mater. Sci. Mater. Electron. 27, 6809–6815 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Liu, F. Sun, X. Li, Effect of Ni, Bi concentration on the microstructure and shear behavior of low-Ag SAC-Bi-Ni/Cu solder joints. J. Mater. Sci. Mater. Electron. 25, 2627–2633 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China
  2. 2.EEMCS FacultyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations