Advertisement

Preparation and characterization of BaSmxFe12−xO19/polypyrrole composites

  • Kaiqi Yang
  • Ying Liu
  • Michael G. B. Drew
  • Yue Liu
Article
  • 24 Downloads

Abstract

BaSmxFe12−xO19 and its composite with polypyrrole have been prepared by the hydrothermal method and in-situ polymerization respectively. The polypyrrole is found to form uniform coats on the surface of BaSmxFe12−xO19 without having serious effects on the morphology of the inorganic compound. However, in the composite the dispersion of samples increased and the density of samples decreased. In particular when x = 0.2, both the ferrite and its composite show special properties in regard of the peak intensities of XRD, saturation magnetization, residual magnetization, coercive force of magnetic properties, and reflection loss for microwaves. The problems with the time-honored method for characterizing reflection loss have also been addressed and a more accurate method is described and has been used in this study.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10854_2018_9438_MOESM1_ESM.pdf (317 kb)
Supplementary material 1 (PDF 317 KB)

References

  1. 1.
    S. Chandrasekaran, S. Ramanathan, T. Basak, Microwave material processing—a review. Fluid Mech. Transp. Phenom. 58(2), 330–363 (2012)Google Scholar
  2. 2.
    J. Liu, M.-S. Cao, Q. Luo, H.-L. Shi, W.-Z. Wang, J. Yuan, Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 8, 22615–22622 (2016)CrossRefGoogle Scholar
  3. 3.
    W.-Q. Cao, X.-X. Wang, J. Yuan, W.-Z. Wang, M.-S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2015)CrossRefGoogle Scholar
  4. 4.
    M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, X. Wang, M. Cao, Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 11(3), 1426–1436 (2018)CrossRefGoogle Scholar
  6. 6.
    X.-X. Wang, T. Ma, J.-C. Shu, M.-S. Cao, Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J. 332, 321–330 (2018)CrossRefGoogle Scholar
  7. 7.
    C.-J. Cheng, A.Y. Borisevich, D. Kan, I. Takeuchi, V. Nagarajan, Nanoscale structural and chemical properties of antipolar clusters in Sm-doped BiFeO3 ferroelectric epitaxial thin films. Chem. Mater. 22, 2588–2596 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Irfan, L. Li, A.S. Saleemi, C.-W. Nan, Enhanced photocatalytic activity of La3+ and Se4+ co-doped bismuth ferrite nanostructures. J. Mater. Chem. A 5, 11143 (2017)CrossRefGoogle Scholar
  9. 9.
    J. Luo, Y. Zuo, P. Shen, Z. Yan, K. Zhang, Excellent microwave absorption properties by tuned electromagnetic parameters in polyanilinecoated Ba0.9La0.1Fe11.9Ni0.1O19/reduced grapheme oxide nanocomposites. RSC. Adv. 7, 36433–36443 (2017)CrossRefGoogle Scholar
  10. 10.
    H. Liu, L. Yuan, S. Wang, H. Fang, Y. Zhang, C. Hou, S. Feng, Structure, optical spectroscopy properties and thermochromism of Sm3Fe5O12 garnets. J. Mater. Chem. C 4, 10529–10537 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, Giant magnetodielectric and enhanced multiferroic properties of Sm doped bismuth ferrite nanoparticles. J. Mater. Chem. C 2, 5885–5891 (2014)CrossRefGoogle Scholar
  12. 12.
    S.R. Naik, A.V. Salker, Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J. Mater. Chem. 22, 2740–2750 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Li, Y. Wang, Y. Wang, F. Chen, C. Xia, Bismuth doped lanthanum ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells. ACS Appl. Mater. Interfaces 6, 11286–11294 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Liu, J. Wei, Y. Guo, T. Yang, Z. Xu, Phase transition, interband electronic transitions and enhanced ferroelectric properties in Mn and Sm co-doped bismuth ferrite films. RSC Adv. 6, 96563–96572 (2016)CrossRefGoogle Scholar
  15. 15.
    T. Zheng, J. Wu, Enhanced piezoelectric activity in high-temperature Bi1–x–ySmxLayFeO3 lead-free ceramics. J. Mater. Chem. C 3, 3684–3693 (2015)CrossRefGoogle Scholar
  16. 16.
    H.S. Aziz, S. Rasheed, R.A. Khan, A. Rahim, J. Nisar, M.S. Shah, F. Iqbal, A.R. Khan, Evaluation of electrical, dielectric and magnetic characteristics of Al–La doped nickel spinel ferrites. RSC Adv. 6, 6589–6597 (2016)CrossRefGoogle Scholar
  17. 17.
    A.K. Jena, J. Mohanty, Enhancing ferromagnetic properties in bismuth ferrites with non‑magnetic Y and Sc co‑doping. J. Mater. Sci.: Mate. Electron. 29, 5150–5156 (2018)Google Scholar
  18. 18.
    S.A. Hosseini, Low-cost and eco-friendly viable approach for synthesis of thulium doped copper ferrite nanoparticles using starch. J. Mater. Sci.: Mater. Electron. 27, 7433–7437 (2016)Google Scholar
  19. 19.
    R. Che, Y. Jiang, L. Wei, X. He Preparation and thermal analysis kinetics of the core–nanoshell composite materials doped with Sm. J. Therm. Anal. Calorim. 116, 905–913 (2014)CrossRefGoogle Scholar
  20. 20.
    P. Xu, X. Han, C. Wang, H. Zhao, J. Wang, X. Wang, B. Zhang, Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole. J. Phys. Chem. B 112, 2775–2781 (2008)CrossRefGoogle Scholar
  21. 21.
    Y. Liu, R. Tai, M.G.B. Drew, Y. Liu, Several theoretical perspectives of ferrite based materials—part 1: transmission-line theory and microwave absorption. J. Superconduct. Novel Magn. 30(9), 2489–2504 (2017)CrossRefGoogle Scholar
  22. 22.
    Y. Liu, H. Yu, M.G.B. Drew, Y. Liu, A systemized parameter set applicable to microwave absorption for ferrite based materials. J. Mater. Sci.: Mater. Electron. 29(2), 1562–1575 (2018)Google Scholar
  23. 23.
    Y. Liu, K. Zhao, M.G.B. Drew, Y. Liu, A theoretical and practical clarification on the calculation of reflection loss for microwave absorbing materials. AIP Adv. 8, 015223 (2018)CrossRefGoogle Scholar
  24. 24.
    Z. Jiao, J. Qiu, Microwave absorption performance of iron oxide/multiwalled carbon nanotubes nanohybrids prepared by electrostatic attraction. J. Mater. Sci. 53, 3640–3646 (2018)CrossRefGoogle Scholar
  25. 25.
    C. Li, Y. Zhang, S. Ji, X. Jiang, Z. Zhang, L. Yu, Microwave absorption properties of γ-Fe2O3/(SiO2)x–SO3H/polypyrrole core/shell/shell microspheres. J. Mater. Sci. 53, 5270–5286 (2018)CrossRefGoogle Scholar
  26. 26.
    W. Feng, Y. Wang, J. Chen, L. Guo, J. Ouyang, D. Jia, Y. Zhou, Phys. Chem. Chem. Phys. 19, 14596–14605 (2017)CrossRefGoogle Scholar
  27. 27.
    Y. Wang, W. Wang, M. Zhu, D. Yu, Electromagnetic wave absorption polyimide fabric prepared by coating with core–shell NiFe2O4@PANI nanoparticles. RSC Adv. 7, 42891–42899 (2017)CrossRefGoogle Scholar
  28. 28.
    X. Zeng, B. Yang, H. Yang, L. Zhu, R. Yu, Solvothermal synthesis and good microwave absorbing properties for magnetic porous-Fe3O4/graphene nanocomposites. AIP Adv. 7, 056605 (2017)CrossRefGoogle Scholar
  29. 29.
    C. Cui, P. Zhou, X. Liu, S.W. Or, S.L. Ho, Ag3PO4 nanoparticle-decorated Ni/C nanocapsules with tunable electromagnetic absorption properties. AIP Adv. 7, 056421 (2017)CrossRefGoogle Scholar
  30. 30.
    H. Wang, C. Wang, Y. Xiong, Q. Yao, Q. Chang, Y. Chen, C. Jin, Q. Sun, Solvothermal fabrication and growth behavior study of spherical MnFe2O4 through a bottom-up method on wood substrate with effective microwave absorption. RSC Adv. 7, 24764–24770 (2017)CrossRefGoogle Scholar
  31. 31.
    Y. Zhang, B. Quan, W. Liu, X. Liang, G. Ji, Y. Du A facile one-pot strategy for fabrication of carbon-based microwave absorbers: effects on annealing and paraffin content. Dalton Trans. 46, 9097–9102 (2017)CrossRefGoogle Scholar
  32. 32.
    L. Yan, C. Hong, B. Sun, G. Zhao, Y. Cheng, S. Dong, D. Zhang, X. Zhang, In situ growth of core—sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 9, 6320–6331 (2017)CrossRefGoogle Scholar
  33. 33.
    M. Qiao, X. Lei, Y. Ma, L. Tian, K. Su, Q. Zhang, Well-defined core–shell Fe3O4@polypyrrole composite microspheres with tunable shell thickness: synthesis and their superior microwave absorption performance in the Ku Band. Ind. Eng. Chem. Res. 55, 6263–6275 (2016)CrossRefGoogle Scholar
  34. 34.
    X. Qiu, L. Wang, H. Zhu, Y. Guan, Q. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nanoporous carbon. Nanoscale 9, 7408–7418 (2017)CrossRefGoogle Scholar
  35. 35.
    C. Liu, Y. Zhang, Y. Tang, Z. Wang, H. Tang, Y. Ou, L. Yu, N. Ma, P. Du, Excellent absorption properties of BaFe12−xNbxO19 controlled by multi-resonance permeability, enhanced permittivity, and the order of matching thickness. Phys. Chem. Chem. Phys. 19, 21893–21903 (2017)CrossRefGoogle Scholar
  36. 36.
    W. Feng, Y. Wang, J. Chen, L. Guo, J. Ouyang, D. Jia, Y. Zhou, Microwave absorbing property optimization of starlike ZnO/reduced graphene oxide doped by ZnO nanocrystal composites. Phys. Chem. Chem. Phys. 19, 14596–14605 (2017)CrossRefGoogle Scholar
  37. 37.
    J. Li, L. Wang, D. Zhang, Y. Qu, G. Wang, G. Tian, A. Liu, H. Yue, S. Feng, Reduced graphene oxide modified mesoporous FeNi alloy/carbon microspheres for enhanced broadband electromagnetic wave absorbers. Mater. Chem. Front. 1, 1786–1794 (2017)CrossRefGoogle Scholar
  38. 38.
    J. Li, D. Zhang, H. Qi, G. Wang, J. Tang, G. Tian, Economical synthesis of composites of FeNi alloy nanoparticles evenly dispersed in two-dimensional reduced graphene oxide as thin and effective electromagnetic wave absorbers. RSC Adv. 8, 8393–8401 (2018)CrossRefGoogle Scholar
  39. 39.
    N. Zhou, Q. An, Z. Xiao, S. Zhai, Z. Shi, Solvothermal synthesis of three-dimensional, Fe2O3 NPs-embedded CNT/N-doped grapheme composites with excellent microwave absorption performance. RSC Adv. 7, 45156–45169 (2017)CrossRefGoogle Scholar
  40. 40.
    H. Pan, M. Xu, Q. Qi, X. Liu, Facile preparation and excellent microwave absorption properties of an RGO/Co0.33Ni0.67 lightweight absorber. RSC Adv. 7, 43831–43838 (2017)CrossRefGoogle Scholar
  41. 41.
    W. Chen, Q. Liu, X. Zhu, M. Fu, One-step in situ synthesis of strontium ferrites and strontium ferrites/graphene composites as microwave absorbing materials. RSC Adv. 7, 40650–40657 (2017)CrossRefGoogle Scholar
  42. 42.
    S. Fang, D. Huang, R. Lv, Y. Bai, Z.-H. Huang, J. Gu, F. Kang, Three-dimensional reduced graphene oxide powder for efficient microwave absorption in the Sband (2–4 GHz). RSC Adv. 7, 25773–25779 (2017)CrossRefGoogle Scholar
  43. 43.
    C. Chambers, P. Sumner, Replication is the only solution to scientific fraud. The Guardian. https://www.theguardian.com/commentisfree/2012/sep/14/solution-scientific-fraud-replication. Accessed 14 Sep 2012
  44. 44.
    A. Jha, High-profile cases and modern technology are putting scientific deceit under the microscope. The Guardian. https://www.theguardian.com/science/2012/sep/13/scientific-research-fraud-bad-practice. Accessed 13 Sep 2012
  45. 45.
    R. Schekman, How journals like Nature, Cell and Science are damaging science. The Guardian. https://www.theguardian.com/commentisfree/2013/dec/09/how-journals-nature-science-cell-damage-science. Accessed 9 Dec 2013
  46. 46.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, L.Y. Matzui, Investigation into the structural features and microwave absorption of doped barium hexaferrites. Dalton Trans. 46, 9010–9021 (2017)CrossRefGoogle Scholar
  47. 47.
    R. Mohammadian, S. Rahmani, M.S.S. Dorraji, I. Hajimiri, Microwave absorption properties of GO nanosheets-BaFe12O19–NiO nanocomposites based on epoxy resin: optimization using Taguchi methodology. J. Mate. Sci.: Mater. Electron 29, 4583–4595 (2018)Google Scholar
  48. 48.
    J. Jin, Y. Liu, M.G.B. Drew, Y. Liu, Preparation and characterizations of Ba1−xPbxFe12O19/polypyrrole composites. J. Mater. Sci.: Mater. Electron. 28, 11325–11331 (2017)Google Scholar
  49. 49.
    Y. Liu, X. Li, M.G.B. Drew, Y. Liu, Increasing microwave absorption efficiency in ferrite based materials by doping with lead and forming composites. Mater. Chem. Phys. 162, 677–685 (2015)CrossRefGoogle Scholar
  50. 50.
    Y. Liu, M.G.B. Drew, Y. Liu, Y. Liu, F.L. Cao, A comparative study of Fe3O4/polyaniline composites with octahedral and microspherical inorganic kernels. J. Mater. Sci. 49(10), 3694–3704 (2014)CrossRefGoogle Scholar
  51. 51.
    H. Wang, H. Guo, Y. Dai, D. Geng, Z. Han, D. Li, T. Yang, S. Ma, W. Liu, Z. Zhang, Optimal electromagnetic-wave absorption by enhanced dipole polarization in Ni/C nanocapsules. Appl. Phys. Lett. 101, 083116 (2012)CrossRefGoogle Scholar
  52. 52.
    H. Wang, Y. Dai, W. Gong, D. Geng, S. Ma., D. Li, W. Liu, Z. Zhang, Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances. Appl. Phys. Lett. 102, 223113 (2013)CrossRefGoogle Scholar
  53. 53.
    Y. Liu, Y. Liu, M.G.B. Drew, Comparison of calculations for interplanar distances in a crystal lattice. Cryst. Rev. 23, 252–301 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringShenyang Normal UniversityShenyangPeople’s Republic of China
  2. 2.School of ChemistryThe University of ReadingReadingUK

Personalised recommendations