Advertisement

Low-temperature sintered SnO2 electron transport layer for efficient planar perovskite solar cells

  • Yuqian Yang
  • Jihuai Wu
  • Panfeng Guo
  • Xuping Liu
  • Qiyao Guo
  • Quanzhen Liu
  • Hui Luo
Article

Abstract

Lead amine halide perovskite solar cells (PSCs) have become dominant photovoltaic research topic in this decade. Electron transport layer (ETL) play a crucial role on PSCs. Here, we use tin tetrachloride as Sn source to synthesize SnO2 nanocrystals in a simple hydrothermal method. The as-synthesized SnO2 is spin-coated on FTO substrate, and then sintered under low temperature to form the ETL of planar PSCs. The concentration of SnO2 spin-coating solution and sintering temperature have great influence on the ETL quality and charge transportation in PSCs. Through optimized treatment (0.15 M SnO2, 120 °C sintering), the high quality SnO2 ETL with a uniform coverage, appropriate thickness, less charge recombination and low resistance can be obtained. Based on the ETL, a planar PSC with FAxMA1−xPbI3 achieves a high power conversion efficiency (PCE) of 19.34%. In addition, the planar PSCs based on SnO2 exhibit a stable PCE output and slight hysteresis. These researches provide a low-cost, easy strategy to fabricate tin oxide, and present potential to replace traditional titanium oxide (TiO2) in PSCs in the future.

Notes

Acknowledgements

The authors acknowledge the financial joint support by the National Natural Science Foundation of China (Nos. U1705256, 91422301, 51472094, 61474047).

References

  1. 1.
    H. Snaith, J. Phys. Chem. Lett. 4, 3623–3630 (2013)CrossRefGoogle Scholar
  2. 2.
    H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 345, 542–546 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Lee, J. Teuscher, T. Miyasaka, T. Murakami, H. Snaith, Science 338, 643–647 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, Y. Wei, Chem. Soc. Rev. 46, 5975–6023 (2017)CrossRefGoogle Scholar
  5. 5.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRefGoogle Scholar
  6. 6.
    W. Yang, B. Park, E. Jung, N. Jeon, Y. Kim, D. Lee, S. Shin, J. Seo, E. Kim, J. Noh, Science 356, 1376–1379 (2017)CrossRefGoogle Scholar
  7. 7.
    K. Bush, A. Palmstrom, Z. Yu, M. Boccard, R. Cheacharoen, J. Mailoa, D. Mcmeekin, R. Hoye, C. Bailie, T. Leijtens, Nat. Energy 2, 17009 (2017)CrossRefGoogle Scholar
  8. 8.
    J. Correabaena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. Jacobsson, M. Calvo, A. Abate, Adv. Mater. 28, 5031–5037 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Green, T. Bein, Nat. Mater. 14, 559 (2015)CrossRefGoogle Scholar
  10. 10.
    N. Park, M. Gratzel, T. Miyasaka, K. Zhu, K. Emery, Nat. Energy 1, 16152 (2016)CrossRefGoogle Scholar
  11. 11.
    R. Service, Science 344, 458 (2013)CrossRefGoogle Scholar
  12. 12.
    L. Yanqi, A. Sigalit, S. Michael, M. Ernesto, L. Barry, E. Lioz, Adv. Funct. Mater. 28, 1706995 (2018)CrossRefGoogle Scholar
  13. 13.
    H. Lu, Y. Ma, B. Gu, W. Tian, L. Li, J. Mater. Chem. A 3, 16445–16452 (2015)CrossRefGoogle Scholar
  14. 14.
    W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc. 137, 6730–6733 (2015)CrossRefGoogle Scholar
  15. 15.
    L. Gouda, R. Gottesman, A. Ginsburg, D. Keller, E. Haltzi, J. Hu, S. Tirosh, A. Anderson, A. Zaban, P. Boix, J. Phys. Chem. Lett. 6, 4640–4645 (2015)CrossRefGoogle Scholar
  16. 16.
    B. Roose, J. Baena, K. Godel, M. Graetzel, A. Hagfeldt, U. Steiner, A. Abate, Nano Energy 30, 517 (2016)CrossRefGoogle Scholar
  17. 17.
    P. Tiwana, P. Docampo, M. Johnston, H. Snaith, L. Herz, ACS Nano 5, 5158–5166 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Noh, M. Soh, C. Teh, E. Lim, C. Yap, M. Ibrahim, N. Ludin, M. Teridi, Sol. Energy 158, 474–482 (2017)CrossRefGoogle Scholar
  19. 19.
    P. Zhou, J. Wu, Y. Tu, M. Zhen, J. Huo, Y. Wei, Z. Lan, Sol. Energy 137, 579–584 (2016)CrossRefGoogle Scholar
  20. 20.
    J. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. Jacobsson, A. Kandada, S. Zakeeruddin, Energy Environ. Sci. 8, 2928–2934 (2015)CrossRefGoogle Scholar
  21. 21.
    L. Huang, X. Sun, C. Li, J. Xu, R. Xu, Y. Du, J. Ni, H. Cai, J. Li, Z. Hu, J. Zhang, ACS Appl. Mater. Interfaces 9, 21909 (2017)CrossRefGoogle Scholar
  22. 22.
    X. Jun, O. Yuji, I. Satoshi, M. Hiroaki, K. Ken, Y. Shinsuke, J. Appl. Phys. 123, 115114 (2018)CrossRefGoogle Scholar
  23. 23.
    P. Joshi, L. Zhang, I. Hossain, H. Abbas, R. Kottokkaran, S. Nehra, M. Dhaka, M. Noack, V. Dalal, AIP Adv. 6, 115114 (2016)CrossRefGoogle Scholar
  24. 24.
    G. Xing, N. Mathews, S. Sun, S. Lim, Y. Lam, M. Gratzel, S. Mhaisalkar, T. Sum, Science 342, 344–347 (2013)CrossRefGoogle Scholar
  25. 25.
    T. Wu, J. Wu, Y. Tu, X. He, Z. Lan, M. Huang, J. Lin, J. Power Sources 365, 1–6 (2017)CrossRefGoogle Scholar
  26. 26.
    S. Li, Y. Zhao, X. Gu, Y. Qiang, N. Tan, J. Mater. Sci. Mater. Electron. 28, 13626–13632 (2018)CrossRefGoogle Scholar
  27. 27.
    M. Zhu, W. Liu, W. Ke, S. Clark, E. Secor, T. Song, M. Kanatzidis, X. Li, M. Hersam, J. Mater. Chem. A 5, 1–6 (2017)CrossRefGoogle Scholar
  28. 28.
    Z. Zhu, Y. Bai, X. Liu, C. Chu, S. Yang, A. Jen, Adv. Mater. 28, 6478–6484 (2016)CrossRefGoogle Scholar
  29. 29.
    C. Fei, L. Guo, B. Li, R. Zhang, H. Fu, J. Tian, G. Cao, Nano Energy 27, 17–26 (2016)CrossRefGoogle Scholar
  30. 30.
    S. Senthilarasu, T. Peiris, J. Garciacanadas, K. Wijayantha, J. Phys. Chem. C 116, 19053–19061 (2012)CrossRefGoogle Scholar
  31. 31.
    D. Liu, J. Yang, T. Kelly, J. Am. Chem. Soc. 136, 17116–17122 (2014)CrossRefGoogle Scholar
  32. 32.
    C. Wu, C. Chiang, Z. Tseng, M. Nazeeruddin, A. Hagfeldt, M. Gratzel, Energy Environ. Sci. 8, 2725–2733 (2015)CrossRefGoogle Scholar
  33. 33.
    X. Zhang, T. Wu, X. Xu, L. Zhang, J. Tang, X. He, J. Wu, Z. Lan, Sol. Energy Mater. Sol. Cells 178, 65–73 (2018)CrossRefGoogle Scholar
  34. 34.
    J. Luo, Y. Wang, Q. Zhang, Sol. Energy 163, 289–306 (2018)CrossRefGoogle Scholar
  35. 35.
    Z. Guo, L. Gao, C. Zhang, Z. Xu, T. Ma, J. Mater. Chem. A 6, 4572–4589 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Engineering Research Center of Environment-Friendly Functional Materials for Ministry of Education, Fujian Provincial Key Laboratory of Photoelectric Functional Materials, Institute of Materials Physical ChemistryHuaqiao UniversityXiamenChina

Personalised recommendations