Advertisement

Effect of B2O3 addition on the microwave dielectric properties of NiTiNb2O8 ceramics

  • Mengjuan Wu
  • Jundan Chen
  • Yingchun Zhang
Article
  • 69 Downloads

Abstract

B2O3-doped NiTiNb2O8 microwave dielectric ceramics were prepared via the conventional solid-state reaction route. The effect of B2O3 additives on the sintering behavior, microstructure and microwave dielectric properties were investigated systematically. The addition of B2O3 as liquid phase sintering aid lowered the sintering temperature of NiTiNb2O8 ceramics successfully from 1250 to 1000 °C. With 1 wt% B2O3 addition, the system remained single-phase NiTiNb2O8, and the second phase NbBO4 was observed with 2–4 wt% B2O3 addition. From the study on the sintering behavior of the NiTiNb2O8 ceramics, 2 wt% B2O3 addition made the relative density reached the maximum value at 1000 °C. The 2 wt% doping of B2O3 had a positive effect on the properties of the NiTiNb2O8 ceramics: the \({\varepsilon _r}\) value increased from 62.62 to 64.27, the Q × f value increased from 7294 to 12531 GHz while the τf values decreased from + 128 to + 111 ppm/°C.

Notes

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (No. 51772022).

References

  1. 1.
    H. Shao, Z. Liu, G. Jian, Y. Li, Ceram. Int. 44, 3314–3318 (2018)CrossRefGoogle Scholar
  2. 2.
    M. Xiao, J. Lou, Y. Wei, P. Zhang, Ceram. Int. 44, 885–889 (2018)CrossRefGoogle Scholar
  3. 3.
    H. Wu, E.S. Kim, Ceram. Int. 42, 5785–5791 (2016)CrossRefGoogle Scholar
  4. 4.
    Q. Liao, L. Lin, X. Ren, X. Yu, Q. Meng, W. Xia, Mater. Lett. 89, 351–353 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Wu, Y. Zhang, J. Chen, M. Xiang, J. Alloys Compd. 747, 394–400 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Lia, Z. Tian, L. Yao, S. Ran, C. Fan, Ceram. Int. 43, 15793–15799 (2017)CrossRefGoogle Scholar
  7. 7.
    H. Zuo, X. Tang, H. Guo, Q. Wang, C. Dai, H. Zhang, H. Su, Ceram. Int. 43, 13913–13917 (2017)CrossRefGoogle Scholar
  8. 8.
    J. Zhang, Y. Zhou, B. Peng, Z. Xie, X. Zhang, Z. Yue, J. Am. Ceram. Soc. 97, 3537–3543 (2014)CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, Y. Zhang, M. Xiang, S. Liu, H. Liu, Ceram. Int. 42, 3542–3547 (2016)CrossRefGoogle Scholar
  10. 10.
    P. Zhang, J. Liao, Y. Zhao, X. Zhao, M. Xiao, J. Mater. Sci. Mater. Electron. 28, 686–690 (2017)CrossRefGoogle Scholar
  11. 11.
    G.H. Chen, C.C. Xia, J.S. Chen, J. Mater. Sci. Mater. Electron. 29, 509–513 (2018)CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, S. Liu, Y. Zhang, M. Xiang, J. Mater. Sci. Mater. Electron. 27, 11293–11298 (2016)CrossRefGoogle Scholar
  13. 13.
    H. Wu, Q. Mei, C. Xing, J. Bi, J. Alloys Compd. 679, 26–31 (2016)CrossRefGoogle Scholar
  14. 14.
    B.W. Hakki, P.D. Coleman, IRE Trans. Microw. Theory Tech. 8, 402–410 (1960)CrossRefGoogle Scholar
  15. 15.
    W.E. Courtney, IEEE Trans. Microw. Theory Tech. 18, 476–485 (1970)CrossRefGoogle Scholar
  16. 16.
    Y. Kobayashi, M. Katoh, IEEE Trans. Microw. Theory Tech. 33, 586–592 (1985)CrossRefGoogle Scholar
  17. 17.
    Y.M. Wu, J.L. Zhang, L. Xiao, F. Chen, Appl. Surf. Sci. 256, 4260–4268 (2010)CrossRefGoogle Scholar
  18. 18.
    W.S. Kim, T.H. Kim, E.S. Kim, K.H. Yoon, Jpn. J. Appl. Phys. 37, 5367–5371 (1998)CrossRefGoogle Scholar
  19. 19.
    D.A. Sagala, S. Nambu, J. Am. Ceram. Soc. 75, 2573–2575 (1992)CrossRefGoogle Scholar
  20. 20.
    Y.C. Chen, Y.W. Zeng, J. Alloys Compd. 481, 369–372 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations