Advertisement

Structural properties of tungsten-doped cobalt molybdate and its application in electrochemical oxygen evolution reaction

  • Doldet Tantraviwat
  • Supanan Anuchai
  • Kontad Ounnunkad
  • Surin Saipanya
  • Noppadol Aroonyadet
  • Gobwute Rujijanagul
  • Burapat Inceesungvorn
Article
  • 166 Downloads

Abstract

New tungsten-doped CoMoO4 (W-CoMoO4) was successfully synthesized by a simple co-precipitation method and investigated for a possible application in oxygen evolution reaction (OER). The effect of W6+ doping on structure, morphology, and chemical compositions was investigated by X-ray diffraction spectroscopy, scanning electron microscopy, Fourier transform spectroscopy, Brunauer–Emmet–Teller surface area measurement, and X-ray photoelectron spectroscopy. Linear sweep voltammetry indicates that doping CoMoO4 with an optimum W6+ amount of 21 wt% provides higher current density at lower overpotential than other catalysts. Compared to undoped CoMoO4, the 21 wt% W-CoMoO4 also shows a remarkable activity and excellent long-term stability in alkaline media. This superior activity is ascribed to the synergistic effect of increased oxygen vacancy, enhanced surface area, and possibly improved electrical conductivity upon W6+ doping. The significances of this work are that the potential OER application of Co–W–Mo tertiary oxide, which has never been studied before, and the effect of non-3d high-valency metal (W) doping on OER activity enhancement are now being recognized.

Notes

Acknowledgements

This work was supported by Thailand Research Fund (TRF, Grant No. MRG6080098), the Center of Excellence in Materials Science and Technology, the Center for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, and the Graduate School, Chiang Mai University. Additionally, B.I. would also like to thank Chiang Mai University through Young Researcher Scholarship for the financial support.

References

  1. 1.
    A. Eftekhari, Tuning the electrocatalysts for oxygen evolution reaction. Mater. Today Energy 5, 37–57 (2017)CrossRefGoogle Scholar
  2. 2.
    C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013)CrossRefGoogle Scholar
  3. 3.
    N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Eletrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017)CrossRefGoogle Scholar
  4. 4.
    Y. Tong, J. Xu, H. Jiang, F. Gao, Q. Lu, Thickness-control of ultrathin two-dimensional cobalt hydroxide nanosheets with enhanced oxygen evolution reaction performance. Chem. Eng. J. 316, 225–231 (2017)CrossRefGoogle Scholar
  5. 5.
    X. Liu, Y. Yang, S. Guan, An efficient electrode based on one-dimensional CoMoO4 nanorods for oxygen evolution reaction. Chem. Phys. Lett. 675, 11–14 (2017)CrossRefGoogle Scholar
  6. 6.
    X. Xing, Y. Gui, G. Zhang, C. Song, CoWO4 nanoparticles prepared by two methods displaying different structures and supercapacitive performance. Electrochim. Acta 157, 15–22 (2015)CrossRefGoogle Scholar
  7. 7.
    T. Tian, J. Jiang, L. Ai, In situ electrochemically generated composite-type CoOx/WOx in self-activated cobalt tungstate nanostructures: implication for highly enhanced electrocatalytic oxygen evolution. Electrochim. Acta 224, 551–560 (2017)CrossRefGoogle Scholar
  8. 8.
    J. Meng, J. Fu, X. Yang, M. Wei, S. Liang, H.-Y. Zang, H. Tan, Y. Wang, Y. Li, Efficient MMoO4 (M = Co, Ni) carbon cloth electrodes for water oxidation. Inorg. Chem. Front. 4, 1791–1797 (2017)CrossRefGoogle Scholar
  9. 9.
    V.K.V.P. Srirapu, M. Kumar, R. Awasthi, R.N. Singh, A.S.K. Sinha, Manganese molybdate and its Fe-substituted products as new efficient electrocatalysts for oxygen evolution in alkaline solutions. Int. J. Hydrogen Energy 38, 13587–13595 (2013)CrossRefGoogle Scholar
  10. 10.
    L.Q. Mai, F. Yang, Y.L. Zhao, X. Xu, L. Xu, Y.Z. Luo, Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat. Commun. 2, 381 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Kumar, R. Awashi, A.S.K. Sinha, R.N. Singh, New ternary Fe, Co and Mo mixed oxide electrocatalysts for oxygen evolution. Int. J. Hydrogen Energy 36, 8831–8838 (2011)CrossRefGoogle Scholar
  12. 12.
    B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. Garcia-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, F. Pelayo Garcia, C.T. de Arquer, F. Dinh, M. Fan, E. Yuan, N. Yassitepe, T. Chen, P. Regier, Y. Liu, P. Li, A. De Luna, E.H. Vojvodic, Sargent, homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016)CrossRefGoogle Scholar
  13. 13.
    A.A. El-Moneim, N. Kumagai, K. Hashimoto, Mn-Mo-W oxide anodes for oxygen evolution in sea-water electrolysis for hydrogen production. Mater. Trans. 50, 1969–1977 (2009)CrossRefGoogle Scholar
  14. 14.
    M. Gaudon, C. Carbonera, A.E. Thiry, A. Demourgues, P. deniard, C. Payen, J.-F. Létard, S. Jobic, Adaptable thermochromism in the CuMo1 – xWxO4 series (0 ≤ x < 0.1): a behavior related to a first-order phase transition with a transition temperature depending on x. Inorg. Chem. 46, 10200–10207 (2007)CrossRefGoogle Scholar
  15. 15.
    V. Blanco-Gutierrez, A. Demourgues, E. Lebreau, M. Gaudon, Phase transition in Mn(Mo1 – xWx)O4 oxides under the effect of high pressure and temperature. Phys. Status Solidi B 253, 2043–2048 (2016)CrossRefGoogle Scholar
  16. 16.
    L. Righetti, L. Robertson, A. Largeteau, G. Vignoles, A. Demourgues, M. Gaudon, Co1 – xMgxMoO4 compounds for pressure indicators. ACS Appl. Mater. Interfaces 3, 1319–1324 (2011)CrossRefGoogle Scholar
  17. 17.
    J. Jin, K. Yang, J. Su, Z. Si., W. Dong, Upconversion luminescence of Ba(MoO4)h(WO4)1–h:Yb3+/Er3+ nanocrystals synthesized through hydrothermal method. Opt. Mater. 37, 371–375 (2014)CrossRefGoogle Scholar
  18. 18.
    M. Mandal, D. Ghosh, S. Giri, I. Shakir, C.K. Das, Polyaniline-wrapped 1D Polyaniline-wrapped 1D CoMoO4·0.75H2O nanorods as electrode materials for supercapacitor energy storage applications. RSC Adv. 4, 30832–30839 (2014)CrossRefGoogle Scholar
  19. 19.
    K. Mani Rahulan, N. Angeline Little Flower, R. Annie Sujatha, N. Padmanathan, C. Gopalakrishnan, Non-linear optical absorption studies of CoMoO4 hybrid structures. J. Mater. Sci.: Mater. Electron. 29, 1504–1509 (2018)Google Scholar
  20. 20.
    J.J. Joy, N.V. Jaya, Structural, magnetic and optical behavior of pristine and Yb doped CoWO4 nanostructure. J. Mater. Sci.: Mater. Electron. 24, 1788–1795 (2013)Google Scholar
  21. 21.
    S. Sagadevan, J. Podder, I. Das, Synthesis and characterization of CoWO4 nanoparticles via chemical precipitation technique. J. Mater. Sci.: Mater. Electron. 27, 9885–9890 (2016)Google Scholar
  22. 22.
    Y. Zhao, F. Teng, Z. Liu, Q. Du, J. Xu, Y. Teng, Electrochemical performances of asymmetric super capacitor fabricated by one-dimensional CoMoO4 nanostructure. Chem. Phys. Lett. 664, 23–28 (2016)CrossRefGoogle Scholar
  23. 23.
    G.K. Veerasubramani, K. Krishnamoorthy, S.J. Kim, Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte. J. Power Source 306, 378–386 (2016)CrossRefGoogle Scholar
  24. 24.
    S.H. Liao, S.Y. Lu, S.J. Bao, Y.N. Yu, L. Yu, Electrospinning synthesis of porous CoWO4 nanofibers as an ultrasensitive nonenzymatic, hydrogen-peroxide-sensing interface with enhanced electrocatalysis. Chem. Electro Chem. 2, 2061–2070 (2015)Google Scholar
  25. 25.
    J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou, W. Yang, X. Hu, H. Wang, B. Pan, Y. Xie, Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. Int. Ed. 54, 7399–7404 (2015)CrossRefGoogle Scholar
  26. 26.
    N. Weidler, S. Paulus, J. Schuch, J. Klett, S. Hoch, P. Stenner, A. Malijusch, J. BrÖtz, C. Wittich, B. Kaiser, W. Jaegermann, CoOx thin film deposited by CVD as efficient water oxidation catalyst: change of oxidation state in XPS and its correlation to electrochemical activity. Phys. Chem. Chem. Phys. 18, 10708–10718 (2016)CrossRefGoogle Scholar
  27. 27.
    M. Kuang, P. Han, Q. Wang, J. Li, G. Zheng, CuCo hybrid oxides as bifunctional electrocatalysts for efficient water splitting. Adv. Funct. Mater. 26, 8555–8561 (2016)CrossRefGoogle Scholar
  28. 28.
    X. Lv, Y. Zhu, H. Jiang, X. Yang, Y. Liu, Y. Su, J. Huang, Y. Yao, C. Li, Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalton Trans. 44, 4148–4154 (2015)CrossRefGoogle Scholar
  29. 29.
    L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao, Z. Zhu, Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 29, 1606793 (2017)CrossRefGoogle Scholar
  30. 30.
    L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. 55, 5277–5281 (2016)CrossRefGoogle Scholar
  31. 31.
    J. Yao, Y. Gong, S. Yang, P. Xiao, Y. Zhang, K. Keyshar, G. Ye, S. Ozden, R. Vajtai, P.M. Ajayan, CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 20414–20422 (2014)CrossRefGoogle Scholar
  32. 32.
    Y. Zhu, Z. Yuan, W. Cui, Z. Wu, Q. Sun, S. Wang, Z. Kang, B. Sun, A cost-effective commercial soluble oxide cluster for highly efficient and stable organic solar cells. J. Mater. Chem. A 2, 1436–1442 (2014)CrossRefGoogle Scholar
  33. 33.
    M.W. Kanan, D.G. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008)CrossRefGoogle Scholar
  34. 34.
    J. Kim, X. Chen, Y.-T. Pan, P.-C. Shih, H. Yang, W-doped CaMnO2.5 and CaMnO3 electrocatalysts for enhanced performance in oxygen evolution and reduction reactions. J. Electrochemical. Soc. 164, F1074–F1080 (2017)CrossRefGoogle Scholar
  35. 35.
    Y. Li, X. Ge, L. Wang, J. Liu, Y. Wang, L. Feng, A free standing porous Co/Mo architecture as a robust bifunctional catalyst toward water splitting. RSC Adv. 7, 11568–11571 (2017)CrossRefGoogle Scholar
  36. 36.
    P.F. Siu, S. Yang, L.R. Zheng, B. Zhang, H.G. Yang, Mo6+ activated multimetal oxygen-evolving catalysts. Chem. Sci. 8, 3484–3488 (2017)CrossRefGoogle Scholar
  37. 37.
    M.Q. Yu, L.X. Jiang, H.G. Yang, Ultrathin nanosheets constructed CoMoO4 porous flowers with high activity for electrocatalytic oxygen evolution. Chem. Commun. 51, 14361–14364 (2015)CrossRefGoogle Scholar
  38. 38.
    S.M. AlShehri, J. Ahmed, T. Ahamad, P. Arunachalam, T. Ahmad, A. Khan, Bifunctional electro-catalytic performances of CoWO4 nanocubes for water redox reactions (OER/ ORR). RSC Adv. 7, 45615 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Faculty of EngineeringChiang Mai UniversityChiang MaiThailand
  2. 2.Center of Excellence in Materials Science and Technology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  3. 3.Department of Chemistry, Faculty of Science, and Center of Excellence for Innovation in Chemistry (PERCH-CIC)Chiang Mai UniversityChiang MaiThailand
  4. 4.National Nanotechnology CenterNational Science and Technology Development AgencyKhlong LuangThailand
  5. 5.Department of Physics and Materials Science, Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations