Impact of surfactants on electrical conduction and preferred orientation of spray-pyrolysed nanostructured SnO2 thin films for LPG and ammonia sensing

  • K. Prasanna Kumari
  • Boben ThomasEmail author
  • S. Deepa
  • Skariah Benoy


SnO2 nanostructured thin films by spray pyrolysis technique have been successfully synthesised with surfactants isopropyl alcohol (IPA) and sodium dodecyl sulphate (SDS) independently. The effect of surfactants on the structural, and morphological properties of SnO2 films are investigated by different techniques such as X-ray diffraction, field emission scanning electron microscopy, and high resolution transmission electron microscopy. The deposited tetragonal rutile-phased SnO2 thin films are benefited by morphological modifications along with grain size reduction on changeover of IPA to SDS in the precursor. The sensing properties of the samples are investigated for LPG and NH3 at different operating temperatures. For a concentration of 500 ppm, the SDS employed film shows a maximum response of 96.7% for LPG and 86.8% for ammonia, at an operating temperature of 350 °C. By using SDS, the LPG sensing temperature could be lowered to 200 °C. The charge transport in the films is analysed by studying the dc and ac electrical conduction and a feasible mechanism has been envisaged in relation to the enhanced sensing characteristics of the films. By studying the dielectric constant variation with frequency and by analysing the exponent factor change, it is confirmed that multi-hopping process is responsible for conduction in the films.



The author Prasanna Kumari K. is grateful to Kerala State Council for Science, Technology and Environment (KSCSTE) (822/DIR/2014-15/KSCSTE dated 09.02.2015) for financial assistance. The authors wish to express their gratitude to University Grants Commission (UGC), Govt. of India for the financial support by means of MRP to BT [F.38-128/2009 (SR)] dated 19-12-2009. Deepa S. is thankful to UGC for the faculty improvement programme fellowship (UGC 12th Plan TF CODE: KLMG038 TF 06 dated 04/09/2013).


  1. 1.
    M.A. Boles, D. Ling, T. Hyeon, D.V. Talapin, The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Gangwar, B.K. Gupta, A.K. Srivastava, Prospects of emerging engineered oxide nanomaterials and their applications. Defence Sci. J. 66, 323–340 (2016)CrossRefGoogle Scholar
  3. 3.
    A.M. El-Toni, M.A. Habila, J.P. Labis, Z.A. ALOthman, M. Alhoshan, A.A. Elzatahry, F. Zhang, Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale 8, 2510–2531 (2016)CrossRefGoogle Scholar
  4. 4.
    C. Garzella, E. Comini, E. Tempesti, C. Frigeri, G. Sberveglieri, TiO2 thin films by a novel sol–gel processing for gas sensor applications. Sens. Actuators B 68, 189–196 (2000)CrossRefGoogle Scholar
  5. 5.
    B.C. Monika Singh, A. Yadav, R.K. Ranjan, M. Sonker, Kaur, Detection of liquefied petroleum gas below lowest explosion limit (LEL) using nanostructured hexagonal strontium ferrite thin film. Sens. Actuators B 249, 96–104 (2017)CrossRefGoogle Scholar
  6. 6.
    G. Günkaya, M. Gürbüz, A. Doğan, J. Sensors, Electrophoretic deposition of SnO2 nanoparticles and its LPG sensing characteristics. J. Sens. 2015, 9 (2015)CrossRefGoogle Scholar
  7. 7.
    A.S. Garde, LPG and NH3 sensing properties of SnO2 thick film resistors prepared by screen printing technique. Sens. Transducers J. 122, 128–142 (2010)Google Scholar
  8. 8.
    Y. Wang, C. Ma, X. Sun, H. Li, Preparation and characterization of SnO2 nanoparticles with a surfactant-mediated method. Nanotechnology 13, 565–569 (2002)CrossRefGoogle Scholar
  9. 9.
    G. Xi, Y. He, Q. Zhang, H. Xiao, X. Wang, C. Wang, Synthesis of crystalline microporous SnO2 via a surfactant-assisted microwave heating method: a general and rapid method for the synthesis of metal oxide nanostructures. J. Phys. Chem. C 112, 11645–11649 (2008)CrossRefGoogle Scholar
  10. 10.
    T. Boben., S. Benoy, Spray deposited Mg-doped SnO2 thin film LPG sensor: XPS and EDX analysis in relation to deposition temperature and doping. J. Alloy. Compd. 625, 231–240 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Deepa, A. Joseph, S. Benoy, T. Boben, Gas sensing properties of magnesium doped SnO2 thin films in relation to AC conduction, AIP Conf. Proc. 1576, 49–51 (2014)CrossRefGoogle Scholar
  12. 12.
    T. Boben, S. Benoy, K.K. Radha, Influence of Cs doping in spray deposited SnO2 thin films for LPG sensors. Sens. Actuators B 133, 404–413 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Kumar, A. Kumar, A.C. Abhyankar, Influence of texture coefficient on surface morphology and sensing properties of W-doped nanocrystalline tin oxide thin films. ACS Appl. Mater. Interfaces 7, 3571–3580 (2015)CrossRefGoogle Scholar
  14. 14.
    A.A. Yadav, S.C. Pawar, D.H. Patil, M.D. Ghogare, Properties of (200) oriented, highly conductive SnO2 thin films by chemical spray pyrolysis from non-aqueous medium: effect of antimony doping. J. Alloy. Compd. 652, 145–152 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Rabis, D. Kramer, E. Fabbri, M. Worsdale, R. Kötz, T.J. Schmidt, Catalyzed SnO2 thin films: theoretical and experimental insights into fabrication and electrocatalytic properties. J. Phys. Chem. C 118, 11292–11302 (2014)CrossRefGoogle Scholar
  16. 16.
    B. Slater, C.R.A. Catlow, D.H. Gay, D.E. Williams, V. Dusastre, Study of surface segregation of antimony on SnO2 surfaces by computer simulation techniques. J. Phys. Chem. B 103, 10644–10650 (1999)CrossRefGoogle Scholar
  17. 17.
    C. Haw, W. Chiu, K.N. Hamizah, S.A. Rahman, P. Khiew, S. Radiman, R. Abd-Shukor, M.A.A. Hamid, Tin stearate organometallic precursor prepared SnO2 quantum dots nanopowder for aqueous- and non-aqueous medium photocatalytic hydrogen gas evolution. J. Energy Chem. 25, 691–701 (2016)CrossRefGoogle Scholar
  18. 18.
    W. Bergermayer, I. Tanaka, Reduced SnO2 surfaces by first-principles calculations. Appl. Phys. Lett. 84, 909–911 (2004)CrossRefGoogle Scholar
  19. 19.
    M. Batzill, K. Katsiev, J.M. Burst, U. Diebold, A.M. Chaka, B. Delley, Gas-phase-dependent properties of SnO2 (110), (100), and (101) single-crystal surfaces: structure, composition, and electronic properties. Phys. Rev. B 72, 165410–165414 (2005)CrossRefGoogle Scholar
  20. 20.
    V. Consonni, G. Rey, H. Roussel, D. Bellet, Thickness effects on the texture development of fluorine-doped SnO2 thin films: the role of surface and strain energy. J. Appl. Phys. 111, 033523–033527 (2012)CrossRefGoogle Scholar
  21. 21.
    M. Fantini, I.L. Torriani, C. Constantino, Influence of the substrate on the crystalline properties of sprayed tin dioxide thin films. J. Cryst. Growth 74, 439–442 (1986)CrossRefGoogle Scholar
  22. 22.
    A. Rahal, A. Benhaoua, M. Jlassi, B. Benhaoua, Structural, optical and electrical properties studies of ultrasonically deposited tin oxide (SnO2) thin films with different substrate temperatures. Superlattices Microstruct. 86, 403–411 (2015)CrossRefGoogle Scholar
  23. 23.
    B.D. Cullity, Elements of X-ray Diffraction, 3rd edn. (Addision-Wesley, New York, 2001)Google Scholar
  24. 24.
    V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd edn. (Springer, New York, 2009)Google Scholar
  25. 25.
    W.S. Rasband, Open Source Software (U.S. National Institutes of Health (NIH), Maryland). 1997–2016.
  26. 26.
    V. Bairi, E.B. Shawn, N. Sacre, D. Nair, C.B. Brian, S.B. Alexandru, T. Viswanathan, Ammonia gas sensing behaviour of tanninsulfonic acid doped polyaniline-TiO2 composite. Sensors 15, 26415–26429 (2015)CrossRefGoogle Scholar
  27. 27.
    Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654–3656 (2004)CrossRefGoogle Scholar
  28. 28.
    Q. Wan, T.H. Wang, Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. Chem. Commun. 30, 3841–3843 (2005)CrossRefGoogle Scholar
  29. 29.
    S. Rani, S.C. Roy, N.K. Puri, M.C. Bhatnagar, D. Kanjilal, Enhancement of ammonia sensitivity in swift heavy ion irradiated nanocrystalline thin films. J. Nanomater. 2008, 69 (2008)CrossRefGoogle Scholar
  30. 30.
    X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning, A survey on gas sensing technology. Sensors 12, 9635–9665 (2012)CrossRefGoogle Scholar
  31. 31.
    N.K. Singh, P. Kumar, H. Kumar, R. Rai, Structural and dielectric properties of Dy2(Ba0.5R0.5)2O7 (R = W, Mo) ceramics. Adv. Mater. Lett. 1, 79–82 (2010)CrossRefGoogle Scholar
  32. 32.
    P.P. Sahay, R.K. Mishra, S.N. Pandey, S. Jha, M. Shamsuddin, AC transport properties of nanocrystalline SnO2 semiconductor. Ceram. Int. 38, 1281–1286 (2012)CrossRefGoogle Scholar
  33. 33.
    L. Kungumadevi, R. Sathyamoorthy, A. Subbarayan, AC conductivity and dielectric properties of thermally evaporated PbTe thin films. Solid State Electron. 54, 58–62 (2010)CrossRefGoogle Scholar
  34. 34.
    A. Goswami, A.P. Goswami, Dielectric and optical properties of ZnS films. Thin Solid Films 16, 175–185 (1973)CrossRefGoogle Scholar
  35. 35.
    Ç Oruç, A. Altındal, Structural and dielectric properties of CuO nanoparticles. Ceram. Int. 43, 10708–10714 (2017)CrossRefGoogle Scholar
  36. 36.
    R. Gerhardt, Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity. J. Phys. Chem. Solids 55, 1491–1506 (1994)CrossRefGoogle Scholar
  37. 37.
    S. Demirezen, A. Kaya, S.A. Yerişkin, M. Balbas, Ì Uslu, Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors. Results Phys. 6, 180–185 (2016)CrossRefGoogle Scholar
  38. 38.
    M. MdRahman,, C.V. Vargas, Ramana, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloy. Compd. 617, 547–562 (2014)CrossRefGoogle Scholar
  39. 39.
    B. Parveen, M. Hassan, S. Atiq, S. Riaz, S. Naseem, M.A. Toseef, Structural and dielectric study of nano-crystalline single phase Sn1–xNixS (x Ni = 0–10%) showing room temperature ferromagnetism. Prog. Nat. Sci. Mater. Int. 27, 303–310 (2017)CrossRefGoogle Scholar
  40. 40.
    R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci. Rep. 5, 13645 (2015)CrossRefGoogle Scholar
  41. 41.
    S.K. Rout, A. Hussian, J.S. Lee, I.W. Kim, S.I. Woo, Impedance spectroscopy and morphology of SrBi4Ti4O15 ceramics prepared by soft chemical method. J. Alloy. Compd. 477, 706–711 (2009)CrossRefGoogle Scholar
  42. 42.
    K.T. Selvi, K.A. Mangai, M. Priya, P.S. Kumar, M. Rathnakumari, Structural, electrical and magnetic properties of Mn3O4/MgO nanocomposite. J. Mater. Sci. Mater. Electron. 28, 2317–2324 (2017)CrossRefGoogle Scholar
  43. 43.
    N. Jaafar, H.B. Rhaiem, A.B.H. Amara, Correlation between electrochemical impedance spectroscopy and structural properties of amorphous tunisian metanacrite synthetic material. Adv. Mater. Sci. Eng. 469871, 10 (2014)Google Scholar
  44. 44.
    B. Sundarakannan, K. Kakimoto, H. Ohsato, Frequency and temperature dependent dielectric and conductivity behavior of KNbO3 ceramics. J. Appl. Phys. 94, 5182 (2003)CrossRefGoogle Scholar
  45. 45.
    M.A.L. Nobre, S. Lanfredi, Dielectric loss and phase transition of sodium potassium niobate ceramic investigated by impedance spectroscopy. Catal. Today 78, 529–538 (2003)CrossRefGoogle Scholar
  46. 46.
    A.P.B. Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, I.P. Muthuselvam, F.C. Chou, Influence of Cr substitution on structural, magnetic and electrical conductivity spectra of LaFeO3. J. Alloy. Compd. 646, 924–931 (2015)CrossRefGoogle Scholar
  47. 47.
    S. Kumari, N. Ortega, A. Kumar, S.P. Pavunny, J.W. Hubbard, C. Rinaldi, G. Srinivasan, J.F. Scott, R.S. Katiyar, Dielectric anomalies due to grain boundary conduction in chemically substituted BiFeO3. J. Appl. Phys. 117, 114102 (2015)CrossRefGoogle Scholar
  48. 48.
    R. Rizwana, T.R. Krishna, A.R. James, P. Sarah, Impedance spectroscopy of Na and Nd doped strontium bismuth titanate. Cryst. Res. Technol. 42, 699–706 (2007)CrossRefGoogle Scholar
  49. 49.
    N. Mehta, A. Dwivedi, R. Arora, S. Kumar, A. Kumar, Study of electrical properties of glassy Se100–xTex alloys. Bull. Mater. Sci. 28, 579–583 (2005)CrossRefGoogle Scholar
  50. 50.
    R.S. Vemuri, K.K. Bharathi, S.K. Gullapalli, C.V. Ramana, Effect of structure and size on the electrical properties of nanocrystalline WO3 films. ACS Appl. Mater. Interfaces 2, 2623–2628 (2010)CrossRefGoogle Scholar
  51. 51.
    K.K. Bharathi, N.R. Kalidindi, C.V. Ramana, Grain size and strain effects on the optical and electrical properties of hafnium oxide nanocrystalline thin films. J. Appl. Phys. 108, 083529 (2010)CrossRefGoogle Scholar
  52. 52.
    A.J.E. Rettie, W.D. Chemelewski, D. Emin, C.B. Mullins, Unravelling small-polaron transport in metal oxide photoelectrodes. J. Phys. Chem. Lett. 7, 471–479 (2016)CrossRefGoogle Scholar
  53. 53.
    A.K. Roy, K. Prasad, A. Prasad, Piezoelectric, impedance, electric modulus and AC conductivity studies on (Bi0.5Na0.5)0.95Ba0.05TiO3 ceramic. Process. Appl. Ceram. 7, 81–91 (2013)CrossRefGoogle Scholar
  54. 54.
    K. Kumari, A. Prasad, K. Prasad, Dielectric, impedance/modulus and conductivity studies on [Bi0.5(Na1−xKx)0.5]0.94Ba0.06TiO3, (0.16 ≤ x ≤ 0.20) lead-free ceramics. Am. J. Mater. Sci. 6, 1–18 (2016)Google Scholar
  55. 55.
    A. Amir, Universal frequency-dependent conduction of electron glasses. Europhys. Lett. 107, 47011–47016 (2014)CrossRefGoogle Scholar
  56. 56.
    T.F. Khoon, J. Hassan, Z.A. Wahab, R.S. Azis, Electrical conductivity and dielectric behaviour of manganese and vanadium mixed oxide prepared by conventional solid state method. Eng. Sci. Technol. 19, 2081–2087 (2016)Google Scholar
  57. 57.
    A. Bettaibi, R. Jemai, M.A. Wederni, R. M’nassri, M. Barbouche, H. Rahmouni, K. Khirouni, Effect of erbium concentration on the structural, optical and electrical properties of a Bi4Ti3O12 system. RSC Adv. 7, 22578–22586 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Centre in PhysicsMar Athanasius College (Autonomous)KothamangalamIndia

Personalised recommendations