Advertisement

Influence of vanadium, cobalt-codoping on electrochemical performance of titanium dioxide bronze nanobelts used as lithium ion battery anodes

  • Mahmoud Amirsalehi
  • Masoud Askari
Article
  • 71 Downloads

Abstract

In this work, V, Co-codoped TiO2(B) samples are synthesized through a hydrothermal method, and used as negative electrode materials for lithium ion batteries. The amount of dopants is varied in order to investigate their influence on electrochemical properties. The formation of V, Co-codoped TiO2(B) nanobelts with widths of 20 and 60 nm is demonstrated using X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma–optical emission spectrometry and field-emission scanning electron microscopy analyses. In addition, the electrochemical properties of the samples are tested by cyclic voltammetry, charging/discharging, and cyclic performance techniques. Compared to other samples, TiO2(B) nanobelts codoped with 2.5 wt% Co–2.5 wt% V, shows the best cycling performance, and exhibits the first high capacity of 264.86 mAh g−1 [x = 0.79, LiXTiO2(B)] at a rate of 0.5 C due to the improved Li+ diffusion and electronic conductivity, induced by crystal defects and oxygen vacancy. This electrode demonstrates excellent cyclability and has more than 96% capacity even after 50 cycles. It is concluded that the concentration of dopants in the TiO2(B) structure plays an effective role in improving the electrochemical performance of electrodes.

Notes

Acknowledgements

The authors would like to thank the Sharif University of Technology, Tehran, Iran, for providing facilities and partial financial support of this work.

References

  1. 1.
    Z. Chen, I. Belharouak, Y.K. Sun, K. Amine, Titanium-based anode materials for safe lithium-ion batteries. Adv. Func. Mater. 23(8), 959–969 (2013)CrossRefGoogle Scholar
  2. 2.
    L. Xiao, M. Cao, D. Mei, Y. Guo, L. Yao, D. Qu, B. Deng, Preparation and electrochemical lithium storage features of TiO2 hollow spheres. J. Power Sources 238, 197–202 (2013)CrossRefGoogle Scholar
  3. 3.
    X. Yan, Y. Zhang, K. Zhu, Y. Gao, D. Zhang, G. Chen et al., Enhanced electrochemical properties of TiO2(B) nanoribbons using the styrene butadiene rubber and sodium carboxyl methyl cellulose water binder. J. Power Sources 246, 95–102 (2014)CrossRefGoogle Scholar
  4. 4.
    K. Zhang, J. Shen, Y. Zhang, J. Zhang, C. Wei, X. Ma, Controlled-fabrication, morphology formation mechanism of TiO2-B nanobelts with NiO-doping. Mater. Design 88, 713–719 (2015)CrossRefGoogle Scholar
  5. 5.
    N. Takami, Y. Harada, T. Iwasaki, K. Hoshina, Y. Yoshida, Micro-size spherical TiO2(B) secondary particles as anode materials for high-power and long-life lithium-ion batteries. J. Power Sources 273, 923–930 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Furuya, W. Zhao, M. Unno, H. Noguchi, The electrochemical properties of low-crystallinity TiO2(B)-carbon composite as an anode material in lithium ion battery. Electrochim. Acta 136, 266–273 (2014)CrossRefGoogle Scholar
  7. 7.
    Z. Zhang, Z. Zhou, S. Nie, H. Wang, H. Peng, G. Li, K. Chen, Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries. J. Power Sources 267, 388–393 (2014)CrossRefGoogle Scholar
  8. 8.
    R. Grosjean, M. Fehse, S. Pigeot-Remy, L. Stievano, L. Monconduit, S. Cassaignon, Facile synthetic route towards nanostructured Fe–TiO2(B), used as negative electrode for Li-ion batteries. J. Power Sources 278, 1–8 (2015)CrossRefGoogle Scholar
  9. 9.
    L. Fernández-Werner, R. Faccio, A. Juan, H. Pardo, B. Montenegro, ÁW. Mombrú, Ultrathin, (001) and (100) TiO2(B) sheets: surface reactivity and structural properties. Appl. Surf. Sci. 290, 180–187 (2014)CrossRefGoogle Scholar
  10. 10.
    X. Li, Y. Zhang, Q. Zhong, T. Li, H. Li, J. Huang, Surface decoration with MnO2 nanoplatelets on graphene/TiO2(B) hybrids for rechargeable lithium-ion batteries. Appl. Surf. Sci. 313, 877–882 (2014)CrossRefGoogle Scholar
  11. 11.
    A.R. Armstrong, G. Armstrong, J. Canales, P.G. Bruce, TiO2-B nanowires. Angew. Chem. Int. Ed. 43(17), 2286–2288 (2004)CrossRefGoogle Scholar
  12. 12.
    Y. Tang, L. Hong, Q. Wu, J. Li, G. Hou, H. Cao et al., TiO2(B) nanowire arrays on Ti foil substrate as three-dimensional anode for lithium-ion batteries. Electrochim. Acta 195, 27–33 (2016)CrossRefGoogle Scholar
  13. 13.
    Y. Harada, K. Hoshina, H. Inagaki, N. Takami, Influence of synthesis conditions on crystal formation and electrochemical properties of TiO2(B) particles as anode materials for lithium-ion batteries. Electrochim. Acta 112, 310–317 (2013)CrossRefGoogle Scholar
  14. 14.
    H.Y. Wu, M.H. Hon, C.Y. Kuan, C. Leu, Synthesis of TiO2(B)/SnO2 composite materials as an anode for lithium-ion batteries. Ceram. Int. 41(8), 9527–9533 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Hou, R. Wu, P. Zhao, A. Chang, G. Ji, B. Gao, Q. Zhao, Graphene–TiO2(B) nanowires composite material: synthesis, characterization and application in lithium-ion batteries. Mater. Lett. 100, 173–176 (2013)CrossRefGoogle Scholar
  16. 16.
    K.Y. Kang, D.O. Shin, Y.G. Lee, S. Kim, K.M. Kim, Electrochemical properties of TiO2 nanotube-carbon nanotube composites as anode material of lithium-ion batteries. J. Electroceram. 32(2–3), 246–254 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, Y. Meng, K. Zhu, H. Qiu, Y. Ju, Y. Gao et al., Copper-doped titanium dioxide bronze nanowires with superior high rate capability for lithium ion batteries. ACS Appl. Mater. Interfaces 8(12), 7957–7965 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Liu, H. Jia, L. Han, J. Wang, P. Gao, D. Xu et al., Nanosheet-constructed porous TiO2–B for advanced lithium ion batteries. Adv. Mater. 24(24), 3201–3204 (2012)CrossRefGoogle Scholar
  19. 19.
    Z. Yang, G. Du, Z. Guo, X. Yu, Z. Chen, T. Guo et al., TiO2(B)@anatase hybrid nanowires with highly reversible electrochemical performance. Electrochem. Commun. 13(1), 46–49 (2011)CrossRefGoogle Scholar
  20. 20.
    Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Nanoparticulate TiO2(B): an anode for lithium-ion batteries. Angew. Chem. Int. Ed. 51(9), 2164–2167 (2012)CrossRefGoogle Scholar
  21. 21.
    S. Brutti, V. Gentili, H. Menard, B. Scrosati, P.G. Bruce, TiO2-(B) nanotubes as anodes for lithium batteries: origin and mitigation of irreversible capacity. Adv. Energy Mater. 2(3), 322–327 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Fehse, E. Ventosa, Is TiO2(B) the future of titanium-based battery materials? ChemPlusChem 80(5), 785–795 (2015)CrossRefGoogle Scholar
  23. 23.
    H. Huang, Z. Yu, W. Zhu, Y. Gan, Y. Xia, X. Tao, W. Zhang, Hierarchically porous nanoflowers from TiO2–B nanosheets with ultrahigh surface area for advanced lithium-ion batteries. J. Phys. Chem. Solids 75(5), 619–623 (2014)CrossRefGoogle Scholar
  24. 24.
    M.G. Choi, Y.G. Lee, S.W. Song, K.M. Kim, Lithium-ion battery anode properties of TiO2 nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles. Electrochim. Acta 55(20), 5975–5983 (2010)CrossRefGoogle Scholar
  25. 25.
    Z. Wei, R. Li, T. Huang, A. Yu, Fabrication and electrochemical properties of Si/TiO2 nanowire array composites as lithium ion battery anodes. J. Power Sources 238, 165–172 (2013)CrossRefGoogle Scholar
  26. 26.
    Y. Qiao, X. Hu, Y. Huang, Microwave-induced solid-state synthesis of TiO2(B) nanobelts with enhanced lithium-storage properties. J. Nanopart. Res. 14(2), 1–7 (2012)CrossRefGoogle Scholar
  27. 27.
    D.P. Opra, S.V. Gnedenkov, A.A. Sokolov, V.V. Zheleznov, E.I. Voit, Y.V. Sushkov, S.L. Sinebryukhov, Enhancing the reversible capacity of nanostructured TiO2 (anatase) by Zr-doping using a sol–gel template method. Scripta Mater. 107, 136–139 (2015)CrossRefGoogle Scholar
  28. 28.
    S.K.S. Patel, N.S. Gajbhiye, Room temperature magnetic properties of Cu-doped titanate, TiO2(B) and anatase nanorods synthesized by hydrothermal method. Mater. Chem. Phys. 132(1), 175–179 (2012)CrossRefGoogle Scholar
  29. 29.
    J.Y. Zhin, D. Samuelis, J. Maier, Defect chemistry of lithium storage in TiO2 as a function of oxygen stoichiometry. Solid State Ionics 225, 590–593 (2012)CrossRefGoogle Scholar
  30. 30.
    M.V. Reddy, N. Sharma, S. Adams, R.P. Rao, V.K. Peterson, B.V. Chowdari, Evaluation of undoped and M-doped TiO2, where M = Sn, Fe, Ni/Nb, Zr, V, and Mn, for lithium-ion battery applications prepared by the molten-salt method. RSC Adv 5(37), 29535–29544 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Lübke, I. Johnson, N.M. Makwana, D. Brett, P. Shearing, Z. Liu, J.A. Darr, High power TiO2 and high capacity Sn-doped TiO2 nanomaterial anodes for lithium-ion batteries. J. Power Sources 294, 94–102 (2015)CrossRefGoogle Scholar
  32. 32.
    J. Fang, W. Liu, F. Yu, F. Qin, M. Wang, K. Zhang, Y. Lai, Fe, S co-doped anatase TiO2 nanotubes as anodes with improved electrochemical performance for lithium ion batteries. RSC Adv. 6(74), 70133–70140 (2016)CrossRefGoogle Scholar
  33. 33.
    R.T. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallograph. Sect. A 32(5), 751–767 (1976)CrossRefGoogle Scholar
  34. 34.
    T. Preethi, B. Abarna, K.N. Vidhya, G.R. Rajarajeswari, Sol–gel derived cobalt doped nano-titania photocatalytic system for solar light induced degradation of crystal violet. Ceram. Int. 40(8), 13159–13167 (2014)CrossRefGoogle Scholar
  35. 35.
    W. Khan, S. Ahmad, M.M. Hassan, A.H. Naqvi, Structural phase analysis, band gap tuning and fluorescence properties of Co doped TiO2 nanoparticles. Opt. Mater. 38, 278–285 (2014)CrossRefGoogle Scholar
  36. 36.
    Y. Fu, H. Ming, Q. Zhou, L. Jin, X. Li, J. Zheng, Nitrogen-doped carbon coating inside porous TiO2 using small nitrogen-containing molecules for improving performance of lithium-ion batteries. Electrochim. Acta 134, 478–485 (2014)CrossRefGoogle Scholar
  37. 37.
    P. Jiang, W. Xiang, J. Kuang, W. Liu, W. Cao, Effect of cobalt doping on the electronic, optical and photocatalytic properties of TiO2. Solid State Sci. 46, 27–32 (2015)CrossRefGoogle Scholar
  38. 38.
    K. Chen, J. Li, J. Li, Y. Zhang, W. Wang, Synthesis and characterization of TiO2–montmorillonites doped with vanadium and/or carbon and their application for the photodegradation of sulphorhodamine B under UV–vis irradiation. Colloids Surf. A 360(1), 47–56 (2010)CrossRefGoogle Scholar
  39. 39.
    G.N. Shao, S.M. Imran, S.J. Jeon, S.J. Kang, S.M. Haider, H.T. Kim, Sol–gel synthesis of vanadium doped titania: effect of the synthetic routes and investigation of their photocatalytic properties in the presence of natural sunlight. Appl. Surf. Sci. 351, 1213–1223 (2015)CrossRefGoogle Scholar
  40. 40.
    S.H. Lim, C. Ferraris, M. Schreyer, K. Shih, J.O. Leckie, T.J. White, The influence of cobalt doping on photocatalytic nano-titania: crystal chemistry and amorphicity. J. Solid State Chem. 180(10), 2905–2915 (2007)CrossRefGoogle Scholar
  41. 41.
    J. Yang, S. Cui, J.Q. Qiao, H.Z. Lian, The photocatalytic dehalogenation of chlorophenols and bromophenols by cobalt doped nano TiO2. J. Mol. Catal. A 395, 42–51 (2014)CrossRefGoogle Scholar
  42. 42.
    M. Tahir, N.S. Amin, Photocatalytic CO2 reduction with H2 as reductant over copper and indium co-doped TiO2 nanocatalysts in a monolith photoreactor. Appl. Catal. A 493, 90–102 (2015)CrossRefGoogle Scholar
  43. 43.
    Y. Miao, Z. Zhai, L. Jiang, Y. Shi, Z. Yan, D. Duan, … J. Wang, Facile and new synthesis of cobalt doped mesoporous TiO2 with high visible-light performance. Powder Technol. 266, 365–371 (2014)CrossRefGoogle Scholar
  44. 44.
    R. Jaiswal, N. Patel, D.C. Kothari, A. Miotello, Improved visible light photocatalytic activity of TiO2 co-doped with vanadium and nitrogen. Appl. Catal. B 126, 47–54 (2012)CrossRefGoogle Scholar
  45. 45.
    T.D. Pham, B.K. Lee, Novel adsorption and photocatalytic oxidation for removal of gaseous toluene by V-doped TiO2/PU under visible light. J. Hazard. Mater. 300, 493–503 (2015)CrossRefGoogle Scholar
  46. 46.
    R. Vasilić, S. Stojadinović, N. Radić, P. Stefanov, Z. Dohčević-Mitrović, B. Grbić, One-step preparation and photocatalytic performance of vanadium doped TiO2 coatings. Mater. Chem. Phys. 151, 337–344 (2015)CrossRefGoogle Scholar
  47. 47.
    M. Khan, J. Li, W. Cao, A. Ullah, Advancement in the photocatalytic properties of TiO2 by vanadium and yttrium codoping: effect of impurity concentration on the photocatalytic activity. Sep. Purif. Technol. 130, 15–18 (2014)CrossRefGoogle Scholar
  48. 48.
    M. Zukalova, M. Kalbac, L. Kavan, I. Exnar, M. Graetzel, Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17(5), 1248–1255 (2005)CrossRefGoogle Scholar
  49. 49.
    J. Wang, Y. Zhou, Z. Shao, Porous TiO2(B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries. Electrochim. Acta 97, 386–392 (2013)CrossRefGoogle Scholar
  50. 50.
    B.R. Kim, K.S. Yun, H.J. Jung, S.T. Myung, S.C. Jung, W. Kang, S.J. Kim, Effect of anatase phase on electrochemical properties of the TiO2(B) negative electrode for lithium-ion battery application. Curr. Appl. Phys. 13, S148–S151 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Materials Science and Engineering DepartmentSharif University of TechnologyTehranIran

Personalised recommendations