Advertisement

Wurtzite Mg0.3Zn0.7O film and UV detector

  • Hongbin Wang
  • Quansheng Liu
  • Xiaoqian Ma
  • Hongwei Liu
  • Xiyan Zhang
Article
  • 72 Downloads

Abstract

MgxZn1−xO has attracted more attention due to its tunable direct band gap, which can make it tune optical absorption from near to the deep ultraviolet range. The synthesis temperature has important influence on the regulation of bandgap. So, we studied the effects of synthetic temperature on properties in this work. Mg0.3Zn0.7O thin films were grown on quartz substrates by sol–gel method from 700 to 1000 °C. The effects of substrate temperatures on the structure and optical properties were investigated. The X-ray diffraction patterns showed that all the alloy films grew along (100), (101), (002) orientation, and belonged to a hexagonal wurtzite structure. With increase of the growth temperature, the diffraction intensity of the (002) peaks increase and the film along c-axis oriented growth was formed at 900 °C. The optical band gap enlarged gradually from 3.4628 to 3.5014 eV with the increase of the growth temperature and the film has the lowest resistivity of 5.248 × 107 Ω cm at 900 °C. The photo-electric properties of the film calcinated at 900 °C were studied. A maximum photocurrent is 1.54 µA at 20 V bias and photo-responsivity peaking at 330 nm is 1.66 A/W at 30 V bias, respectively.

Notes

Acknowledgements

This work has been supported by the key laboratory fund of Chinese General Armament Department (No. 9140A12050515BQ03172).

Supplementary material

10854_2018_9427_MOESM1_ESM.docx (239 kb)
Supplementary material 1 (DOCX 238 KB)

References

  1. 1.
    G. Tabares, A. Hierro, B. Vinter, J.M. Chauveau, Appl. Phys. Lett. 99, 071108 (2011)CrossRefGoogle Scholar
  2. 2.
    C.-J. Pan, H.-C. Hsu, H.M. Cheng, C.Y. Wu, W.-F. Hsieh, J. Solid State Chem. 180, 1188–1192 (2007)CrossRefGoogle Scholar
  3. 3.
    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S. JCho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005)CrossRefGoogle Scholar
  4. 4.
    D. Sivalingam, J.B. Gopalakrishnan, J.B.B. Rayappan, Mater. Lett. 77, 117 (2012)CrossRefGoogle Scholar
  5. 5.
    K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Nat. Mater. 10, 45 (2011)CrossRefGoogle Scholar
  6. 6.
    C.L. Jia, K.M. Wang, X.L. Wang, X.J. Zhang, F. Lu, Opt. Express 13, 5093 (2005)CrossRefGoogle Scholar
  7. 7.
    Y. Choi, K. Lee, C.H. Park, K.H. Lee, J.W. Nam, M.M. Sung, K.M. Lee, H.C. Sohn, S. Im, High current fast switching n-ZnO/p-Si diode. J. Phys. D 43(34), 345101 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Cavas, R.K. Gupta, A.A. Al-Ghamdi, O.A. Al-Hartomy, F. El-Tantawy, F. Yakuphanoglu, Fabrication and electrical characterization of transparent NiO/ZnO p–n junction by the sol–gel spin coating method. J. Sol–Gel Sci. Technol. 64(1), 219–223 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Cavas, R.K. Gupta, A.A. Al-Ghamdi, O.A. Al-Hartomy, F. El-Tantawy, F. Yakuphanoglu, Fabrication and electrical characterization of transparent NiO/ZnO p-n junction by the sol-gel spin coating method. J. Sol–Gel Sci. Technol. 64, 219 (2012)CrossRefGoogle Scholar
  10. 10.
    D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Tao, S. Koyama, M.Y. Shen, T. Goto, Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett. 70, 2230 (1997)CrossRefGoogle Scholar
  11. 11.
    T. Aoki, Y. Hatanaka, D.C. Look, ZnO diode fabricated by excimer-laser doping. Appl. Phys. Lett. 76, 3257 (2000)CrossRefGoogle Scholar
  12. 12.
    S.-T. Lien, J.-Z. Chen, Y.-J. Yang, C.-C. Hsu, I.-C. Cheng, Ceram. Int. 40, 2707–2715 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Yu, N. Tian, Y.F. Deng, H.H. Zhang, J. Alloys Compd. 667, 359–362 (2016)CrossRefGoogle Scholar
  14. 14.
    R. Vettumperumal, S. Kalyanaraman, R. Thangavel, Mater. Chem. Phys. 145, 237–242 (2014)CrossRefGoogle Scholar
  15. 15.
    N.B. Chen, C.H. Sui, Recent progress in research on MgxZn1–xO alloys. Mater. Sci. Eng. B 126, 16 (2006)CrossRefGoogle Scholar
  16. 16.
    A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, MgxZn1–xO as a II–VI wide gap semiconductor alloy. Appl. Phys. Lett. 72, 2466 (1998)CrossRefGoogle Scholar
  17. 17.
    K.B. Sundaram, A. Khan, Thin Solid Films 295, 87 (1997)CrossRefGoogle Scholar
  18. 18.
    Y. Chen, D.M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys. 84, 3912 (1998)CrossRefGoogle Scholar
  19. 19.
    D. Xin, L. Yanbo, H. Keke, Z. Wang, Y. Yin, X. Xiaochuan, Z. Yuantao, W. Jin, Z. Baolin, D. Guotong, Study on the p-MgZnO/i-ZnO/n-MgZnO light-emitting diode fabricated by MOCVD. J. Phys. D 42(23), 235101 (2009)CrossRefGoogle Scholar
  20. 20.
    L.K. Wang, Z.G. Ju, C.X. Shan, J. Zheng, D.Z. Shen, B. Yao, D.X. Zhao, Z.Z. Zhang, B.H. Li, J.Y. Zhang, MgZnO metal-semiconductor-metal structured solar-blind photodetector with fast response. Solid State Commun. 149(45–46), 2021–2023 (2009)CrossRefGoogle Scholar
  21. 21.
    Y.T. Zhang, G.T. Du, X.Q. Wang, W.C. Li, X.T. Yang, Y. Ma, B.J. Zhao, H.J. Yang, D.L. Liu, S.R. Yang, J. Crystal Growth 252, 180 (2003)CrossRefGoogle Scholar
  22. 22.
    W.I. Park, G. Yi, H.M. Jang, Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1–xMgxO (0 < x < 0.49) thin films. Appl. Phys. Lett. 79, 2022 (2001)CrossRefGoogle Scholar
  23. 23.
    W. Liu, S.L. Gu, S.M. Zhu, F. Ye, J.D. Qin, S.M. Liu et al., The deposition and annealing study of MOCVD ZnMgO. J. Appl. Phys. 277, 416 (2005)Google Scholar
  24. 24.
    Y.Y. Kim, C.H. An, H.K. Cho, J.H. Kim, H.S. Lee, E.S. Jung, H.S. Kim, Thin Solid Films 516, 5602 (2008)CrossRefGoogle Scholar
  25. 25.
    P. Puspharajah, S. Radhakrishna, J. Mater. Sci. 32, 3001 (1997)CrossRefGoogle Scholar
  26. 26.
    K.S. Kim, H.W. Kim, C.M. Lee, Effect of growth temperature on ZnO thin film deposited on SiO2 substrate. Mater. Sci. Eng. B 98, 135e9 (2003)Google Scholar
  27. 27.
    M.A. Myers, J.H. Lee, Z. Bi, H. Wang, High quality p-type Ag doped ZnO thin films achieved under elevated growth temperatures. J. Phys. Condens. Matter 24(14), 145802 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Han, Y.K. Shao, Y.M. Lu, P.J. Cao, F. Ji, Y.X. Zeng, W.J. Liu, D.L. Zhu, X.C. Ma, Mater. Chem. Phys. 165, 108–112 (2015)CrossRefGoogle Scholar
  29. 29.
    H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, J. Appl. Phys. 95, 1246 (2004)CrossRefGoogle Scholar
  30. 30.
    X. Li, Y. Liu, J. Song, J. Xu, H. Zeng, Small 38, 5097–5104 (2015)CrossRefGoogle Scholar
  31. 31.
    R. Ding et al., J. Mater. Sci. Technol. 26(7), 601–604 (2010)CrossRefGoogle Scholar
  32. 32.
    D. Jiang, C. Tian, G. Yang, J. Qin, Q. Liang, J. Zhao, J. Hou, S. Gao, Mater. Res. Bull. 67, 158–161 (2015)CrossRefGoogle Scholar
  33. 33.
    J. Huso, H. Che, D. Thapa, A. Canul, M.D. McCluskey, L. Bergman, J. Appl. Phys. 117, 125702 (2015)CrossRefGoogle Scholar
  34. 34.
    K. Huang, Z. Tang, L. Zhang, J. Yu, J. Lv, X. Liu, F. Liu, Appl. Surf. Sci. 258, 3710 (2012)CrossRefGoogle Scholar
  35. 35.
    S. Suwanboon, P. Amornpitoksuk, A. Sukolrat, Ceram. Int. 37, 1359 (2011)CrossRefGoogle Scholar
  36. 36.
    B. Sonawane, M. Bhole, D. Patil, Mater. Sci. Semicond. Process. 12, 212 (2009)CrossRefGoogle Scholar
  37. 37.
    J. Tauc, F. Abeles, Optical Properties of Solids (North Holland, Amsterdam, 1972)Google Scholar
  38. 38.
    I. Takeuchi, W. Yang, K.S. Chang, M.A. Aronova, T. Venkatesan, R.D. Vispute, L.A. Bendersky, J. Appl. Phys. 94, 7336 (2003)CrossRefGoogle Scholar
  39. 39.
    W. Yang, S.S. Hullavarad, B. Nagaraj, I. Takeuchi, R.P. Sharma, T. Venkatesan, R.D. Vispute, H. Shen, Appl. Phys. Lett. 82, 3424 (2003)CrossRefGoogle Scholar
  40. 40.
    C. Li, Z. Zhang, H. Chen, X. Xie, D. Shen, C. Li, Z. Zhang, Thin Solid Films 548, 456–459 (2013)CrossRefGoogle Scholar
  41. 41.
    F. Fang, J. Futter, A. Markwitz, J. Kennedy, UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method. Nanotechnology 20(24), 245502 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChangchun University of Science and TechnologyChangchunChina

Personalised recommendations