Advertisement

Enhanced luminescence properties of MgTO3:Mn4+ red-emitting phosphor by adding Ge4+ ion and H3BO3

  • Renping Cao
  • Xinyu Cheng
  • Fangteng Zhang
  • Lei Su
  • Ting Chen
  • Hui Ao
  • Xiaoguang Yu
  • Wen Ruan
Article
  • 50 Downloads

Abstract

A series of MgTiO3:Mn4+, MgTiO3:Mn4+, Ge4+, and MgTiO3:Mn4+, B3+ phosphors are prepared by the high temperature solid-state reaction method in air. X-ray powder diffraction (XRD) patterns confirm that there is only pure phase in all samples. The samples are composed of microparticles with irregular shapes. Their excitation spectra monitored at 658 nm may be observed in the range of 200–600 nm and their emission spectra with excitation at 330 nm cover the region from 600 to 800 nm due to the 2E → 4A2 transition of Mn4+ ion. The chromaticity coordinate is (0.7233, 0.2767). The optimal Mn4+ content is ~ 0.3% in MgTiO3:Mn4+ phosphor. The luminescence intensity and quantum efficiency of MgTiO3:Mn4+ phosphor may be obviously improved by adding Ge4+ ion and H3BO3. The experimental results are helpful for the luminescence property improvement of other Mn4+ doped materials.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 11464021), Natural Science Foundation of Jiangxi Province of China (Nos. 20171BAB201018, 20171BAB201020), and Foundation of Jiang’xi Educational Committee (No. GJJ160748).

References

  1. 1.
    G. Li, Y. Zhao, J. Xu, Z. Mao, J. Chen, D. Wang, Mater. Chem. Phys. 201, 1–6 (2017)CrossRefGoogle Scholar
  2. 2.
    P. Pust, A.S. Wochnik, E. Baumann, P.J. Schmidt, D. Wiechert, C. Scheu et al., Chem. Mater. 26, 3544–3549 (2014)CrossRefGoogle Scholar
  3. 3.
    C. Poesl, W. Schnick, Chem. Mater. 29(8), 3778–3784 (2017)CrossRefGoogle Scholar
  4. 4.
    R.J. Xie, N. Hirosaki, T. Suehiro, F.F. Xu, M. Mitomo, A. Simple, Chem. Mater. 18, 5578–5583 (2006)CrossRefGoogle Scholar
  5. 5.
    P. Pust, V. Weiler, C. Hecht, A. Tucks, A.S. Wochnik, A.K. Henß et al., Nat. Mater. 13, 891–896 (2014)CrossRefGoogle Scholar
  6. 6.
    R. Kasa, S. Adachi, J. Electrochem. Soc. 159, J89–J95 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Sakurai, T. Nakamura, S. Adachi, ECS J. Solid State Sci. Technol. 5, R206–R210 (2016)CrossRefGoogle Scholar
  8. 8.
    Y. Pan, Z. Chen, X. Jiang, S. Huang, M. Wu, J. Am. Ceram. Soc. 99(9), 3008–3014 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Zhu, L. Huang, R. Zou, J. Zhang, J. Yu, M. Wu, J. Wang, Q. Su, J. Mater. Chem. C 4(24), 5690–5695 (2016)CrossRefGoogle Scholar
  10. 10.
    Z. Wang, N. Wang, Z. Yang, Z. Yang, Q. Wei, Q. Zhou, H. Liang, J. Lumin. 192, 690–694 (2017)CrossRefGoogle Scholar
  11. 11.
    R. Cao, F. Zhang, C. Cao, X. Yu, A. Liang, S. Guo, H. Xue, Opt. Mater. 38, 53–56 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Chen, M. Wang, J. Wang, M.M. Wu, C.X. Wang, J. Solid State Light. 1, 15 (2014)CrossRefGoogle Scholar
  13. 13.
    B. Wang, H. Lin, J. Xu, H. Chen, Y. Wang, ACS Appl. Mater. Interfaces. 6(24), 22905–22913 (2014)CrossRefGoogle Scholar
  14. 14.
    T. Hasegawa, S.W. Kim, T. Abe, S. Kumagai, R. Yamanashi, K. Seki, K. Uematsu, K. Toda, M. Sato, Chem. Lett. 45, 1096–1098 (2016)CrossRefGoogle Scholar
  15. 15.
    Q. Peng, R. Cao, Y. Ye, S. Guo, Z. Hu, T. Chen, G. Zheng, J. Alloys Compd. 725, 139–144 (2017)CrossRefGoogle Scholar
  16. 16.
    K. Seki, S. Kamei, K. Uematsu, T. Ishigaki, K. Toda, M. Sato, J. Ceram. Proc. Res. 14, s67–s70 (2013)Google Scholar
  17. 17.
    Y. Takeda, H. Kato, M. Kobayashi, H. Kobayashi, M. Kakihana, Chem. Lett. 44, 1541–1543 (2015)CrossRefGoogle Scholar
  18. 18.
    R. Cao, J. Huang, X. Ceng, Z. Luo, W. Ruan, Q. Hu, Ceram. Int. 42(11), 13296–13300 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Lin, Y. Hu, H. Wu, H. Duan, L. Chen, Y. Yu, G. Ju, Z. Mu, M. He, Chem. Eng. J. 288, 596–607 (2016)CrossRefGoogle Scholar
  20. 20.
    M.G. Brik, A.M. Srivastava, N.M. Avram, Opt. Mater. 33, 1671–1676 (2011)CrossRefGoogle Scholar
  21. 21.
    R. Cao, J. Zhang, W. Wang, Z. Hu, T. Chen, Y. Ye, X. Yu, Mater. Res. Bull. 87, 109–113 (2017)CrossRefGoogle Scholar
  22. 22.
    R. Cao, W. Wang, J. Zhang, S. Jiang, Z. Chen, W. Li, X. Yu, J. Alloys Compd. 704, 124–130 (2017)CrossRefGoogle Scholar
  23. 23.
    M.G. Brik, A.M. Srivastava, ECS J. Solid State Sci. Technol. 2, R148–R152 (2013)CrossRefGoogle Scholar
  24. 24.
    R. Cao, Z. Shi, G. Quan, T. Chen, S. Guo, Z. Hu, P. Liu, J. Lumin. 188, 577–581 (2017)CrossRefGoogle Scholar
  25. 25.
    C. Wu, J. Li, H. Xu, J. Wu, J. Zhang, Z. Ci, L. Feng, C. Cao, Z. Zhang, Y. Wang, J. Alloys Compd. 646, 734–740 (2015)CrossRefGoogle Scholar
  26. 26.
    R. Cao, W. Luo, Q. Xiong, A. Liang, S. Jiang, Y. Xu, J. Alloys Compd. 648, 937–941 (2015)CrossRefGoogle Scholar
  27. 27.
    S.P. Singh, M. Kim, W.B. Park, J.W. Lee, K.S. Sohn, Inorg. Chem. 55(20), 10310–10319 (2016)CrossRefGoogle Scholar
  28. 28.
    S. Liang, M. Shang, H. Lian, K. Li, Y. Zhang, J. Lin, J. Mater. Chem. C 4, 6409–6416 (2016)CrossRefGoogle Scholar
  29. 29.
    R. Cao, Y. Ye, Q. Peng, G. Zheng, H. Ao, J. Fu, Y. Guo, B. Guo, Dyes Pigm. 146, 14–19 (2017)CrossRefGoogle Scholar
  30. 30.
    K. Li, D. Zhu, R.V. Deun, Dyes Pigm. 142, 69–76 (2017)CrossRefGoogle Scholar
  31. 31.
    A.M. Srivastava, M.G. Brik, S. Camardello, H. Comanzo, F. Garcia-Santamaria, Z. Naturforsch. B 9b(2), 141–149 (2014)Google Scholar
  32. 32.
    A.M. Srivastava, M.G. Brik, J. Lumin. 132, 579–584 (2012)CrossRefGoogle Scholar
  33. 33.
    R. Cao, Z. Shi, G. Quan, Z. Luo, P. Tang, H. Ao, X. Yu, Opt. Mater. 57, 212–216 (2016)CrossRefGoogle Scholar
  34. 34.
    A. Fu, C. Zhou, Q. Chen, Z. Lu, T. Huang, H. Wang, L. Zhou, Ceram. Int. 43(8), 6353–6362 (2017)CrossRefGoogle Scholar
  35. 35.
    R. Louat, A. Louat, E. Duva, Phys. Stat. Sol. (b) 46, 559–565 (1971)CrossRefGoogle Scholar
  36. 36.
    V. ÐorCević, M.G. Brik, A.M. Srivastava, M. Medić, P. Vulić, E. Glais, B. Viana, M.D. Dramićanin, Opt. Mater. 74, 46–51 (2017)CrossRefGoogle Scholar
  37. 37.
    J. Long, C. Wang, X. Yuan, M. Du, R. Ma, Z. Wen, J. Zhang, Y. Cao, Mater. Res. Bull. 85, 234–239 (2017)CrossRefGoogle Scholar
  38. 38.
    Z. Zhou, J. Zheng, R. Shi, N. Zhang, J. Chen, R. Zhang, H. Suo, E.M. Goldys, C. Guo, ACS Appl. Mater. Interfaces 9(7), 6177–6185 (2017)CrossRefGoogle Scholar
  39. 39.
    R. Cao, J. Zhang, W. Wang, T. Chen, Q. Gou, Y. Wen, F. Xiao, Z. Luo, Opt. Mater. 66, 293–296 (2017)CrossRefGoogle Scholar
  40. 40.
    M. Brik, S. Camardello, A. Srivastava, ECS J. Solid State Sci.Technol. 4(3), R39–R43 (2015)CrossRefGoogle Scholar
  41. 41.
    S. Liang, M. Shang, H. Lian, K. Li, Y. Zhang, J. Lin, J. Mater. Chem. C 5(11), 2927–2935 (2017)CrossRefGoogle Scholar
  42. 42.
    X. Huang, Nat. Photonics. 8, 748–749 (2014)CrossRefGoogle Scholar
  43. 43.
    T. Takahashi, S. Adachi, J. Electrochem. Soc. 155, E183–E188 (2008)CrossRefGoogle Scholar
  44. 44.
    G. Liu, B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, Berlin, 2005)Google Scholar
  45. 45.
    R.P. Liferovich, R.H. Mitchell, Acta Crystallographica 60(5), 496–501 (2004)CrossRefGoogle Scholar
  46. 46.
    G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Renping Cao
    • 1
  • Xinyu Cheng
    • 1
  • Fangteng Zhang
    • 2
  • Lei Su
    • 1
  • Ting Chen
    • 1
  • Hui Ao
    • 1
  • Xiaoguang Yu
    • 1
  • Wen Ruan
    • 1
  1. 1.College of Mathematics and PhysicsJinggangshan UniversityJi’anChina
  2. 2.Guangdong University of TechnologyGuangzhouChina

Personalised recommendations