Fabrication of Fe2O3@TiO2 core–shell nanospheres as anode materials for lithium-ion batteries

  • Getong Qin
  • Min ZengEmail author
  • Xing Wu
  • Jianwu Wen
  • Jing Li


Metal oxide electronics materials possess splendid application prospect in lithium ions battery. In this work, Fe2O3@TiO2 nanospheres are synthesized via a facile chemical co-precipitation method combined with hydrolysis method. Field-emission scanning electron microscopy, transmission electron microscopy reveals that the as-prepared Fe2O3@TiO2 is composed of TiO2 as a rigid nanoshell and Fe2O3 as a core. It is found that the TiO2 shell is effective for improving the electrical conductivity and structural stability. This novel core–shell structure showed enhanced electrochemical properties is mainly attributed to the inert TiO2 preventing the Fe2O3 nanoparticles from pulverization and aggregation and the synergistic effects between the Fe2O3 core and TiO2 shell.


  1. 1.
    D. Wang, D. Choi, J. Li, Self-assembled TiO2–graphene hybrid nanostructures for enhanced li-ion insertion. ACS Nano 3(4), 907–914 (2009)CrossRefGoogle Scholar
  2. 2.
    C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, 28–62 (2010)CrossRefGoogle Scholar
  3. 3.
    K. Saravanan, K. Ananthanarayanan, P. Balaya, Mesoporous TiO2 with high packing density for superior lithium storage. Energ. Environ. Sci. 3, 939–948 (2010)CrossRefGoogle Scholar
  4. 4.
    L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructures anode materials for rechargeable lithium-ion batteries. Energ. Environ. Sci. 4, 2682–2699 (2011)CrossRefGoogle Scholar
  5. 5.
    M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013)CrossRefGoogle Scholar
  6. 6.
    D. Wei, Y. Sun, D. Xu, W. Li, X. Zhao, X. Tao, S. Zeng, Mesoporous Fe2O3 nanomaterials from natural rust for lithium storage. J. Mater. Sci.: Mater. Electron. 28, 19098–19104 (2017)Google Scholar
  7. 7.
    G. Huang, F. Zhang, X. Du, J. Wang, D. Yin, L. Wang, Core–shell NiFe2O4@TiO2 nanorods: an anode material with enhanced electrochemical performance for lithium-ion batteries. Chem. Eur. J. 20, 11214–11219 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Hao, B. Zhang, S. Ball, Synthesis of multimodal porous ZnCo2O4 and its electrochemical properties as an anode material for lithium ion batteries. J. Power Sources 294, 112–119 (2015)CrossRefGoogle Scholar
  9. 9.
    Y.L. Qin, F.F. Zhang, X.C. Du, G. Huang, Y.C. Liu, L.M. Wang, Controllable synthesis of cube-like ZnSnO3@TiO2 nanostructures as lithium ion battery anodes. J. Mater. Chem. A 3, 2985–2990 (2015)CrossRefGoogle Scholar
  10. 10.
    L. Shen, L. Yu, H.B. Wu, X.Y. Yu, X. Zhang, X.W. Lou, Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 6, 6694 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Wang, L. Zhang, Y. Wu, Y. Zhong, Y. Hu, X.W. Lou, Carbon-coated Fe3O4 microspheres with a porous multideck-cage structure for highly reversible lithium storage. Chem. Commun. 51, 6921–6924 (2015)CrossRefGoogle Scholar
  12. 12.
    X.B. Zhong, H.Y. Wang, Z.Z. Yang, B. Jin, Q.C. Jiang, Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithium-ion batteries. J. Power Sources 296, 298–304 (2015)CrossRefGoogle Scholar
  13. 13.
    X. Chen, Y. Zhang, H. Lin, Porous ZnMn2O4 nanospheres: facile synthesis through microemulsion method and excellent performance as anode of lithium ion battery. J. Power Sources 312, 137–145 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Zhao, X. Li, B. Yan, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 6, 1502175 (2016)CrossRefGoogle Scholar
  15. 15.
    X. Yan, Z. Wang, M. He, TiO2 nanomaterials as anode materials for lithium-ion rechargeable batteries. Energy Technol. 3, 801–814 (2015)CrossRefGoogle Scholar
  16. 16.
    W. Song, J. Chen, X. Ji, X. Zhang, F. Xie, D.J. Riley, Dandelion-shape TiO2/multi-layer graphene composed of TiO2(B) fibrils and anatase TiO2 pappi utilizing triphase boundaries for Lithium storage. J. Mater. Chem. A 4, 8762–8768 (2016)CrossRefGoogle Scholar
  17. 17.
    N. Emery, M.T. Sougrati, E. Panabière, Unidimensional unit cell variation and Fe+3/Fe+4 redox activity of Li3FeN2 in Li-ion batteries. J. Alloy. Compd. 696, 971–979 (2017)CrossRefGoogle Scholar
  18. 18.
    H. Li, X. Zhu, H. Sitinamaluwa, Graphene oxide wrapped Fe2O3 as a durable anode material for high-performance lithium-ion batteries. J. Alloy. Compd. 714, 425–432 (2017)CrossRefGoogle Scholar
  19. 19.
    X. Tong, M. Zeng, J. Li, F. Li, UV-assisted synthesis of surface modified mesoporous TiO2/G microspheres and its electrochemical performances in lithium ion batteries. Appl. Surf. Sci. 392, 897–903 (2017)CrossRefGoogle Scholar
  20. 20.
    P. Acevedo-Pena, M.E. Rincon, Tailoring TiO2-shell thickness and surface coverage for best performance of multiwalled carbon nanotubes@TiO2 in Li-ion batteries. J. Mater. Sci. 27, 2985–2993 (2016)Google Scholar
  21. 21.
    J. Guo, L. Chen, G. Wang, X. Zhang, F. Li, In situ synthesis of SnO2-Fe2O3@polyaniline and their conversion to SnO2-Fe2O3@C composite as fully reversible anode material for lithium-ion batteries. J. Power Sources 246, 862–867 (2014)CrossRefGoogle Scholar
  22. 22.
    H. Wang, D. Ma, X. Huang, Y. Huang, X. Zhang, General and controllable synthesis strategy of metal oxide/TiO2 hierarchical heterostructures with improved lithium-ion battery performance. Sci. Rep. 2, 701 (2012)CrossRefGoogle Scholar
  23. 23.
    H. Liu, W. Li, D. Shen, D. Zhao, G. Wang, Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 137, 13161–13166 (2015)CrossRefGoogle Scholar
  24. 24.
    J. Yang, Y. Wang, W. Li, Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv. Mater. 29, 48. 1700523 (2017)CrossRefGoogle Scholar
  25. 25.
    K. Kaviyarasu, In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of zinc oxide doped TiO2 nanocrystals: investigation of bio-medical application by chemical method. Mat. Sci. Eng. C 74, 325–333 (2017)CrossRefGoogle Scholar
  26. 26.
    K. Kaviyarasu, Photocatalytic activity of ZrO2 doped lead dioxide nanocomposites: investigation of structural and optical microscopy of RhB organic dye. Appl. Surf. Sci. 421, 234–239 (2017)CrossRefGoogle Scholar
  27. 27.
    Q. Xie, Y. Cheng, S. Chen, Dielectric and thermal properties of epoxy resins with TiO2 nanowires. J. Mater. Sci.: Mater. Electron. 28, 17871–17880 (2017)Google Scholar
  28. 28.
    H. Huang, J. Yu, Y. Gan, Hybrid nanoarchitecture of TiO2 nanotubes and graphene sheet for advanced lithium ion batteries. Mater. Res. Bull. 96, 425–430 (2017)CrossRefGoogle Scholar
  29. 29.
    L. Yan, J. Yu, H. Luo, Ultrafine TiO2 nanoparticles on reduced graphene oxide as anode materials for lithium ion batteries. Appl. Mater. Today 8, 31–34 (2017)CrossRefGoogle Scholar
  30. 30.
    X. Shi, S. Liu, B. Tang, SnO2/TiO2 nanocomposites embedded in porous carbon as a superior anode material for lithium-ion batteries. Chem. Eng. J. 330, 453–461 (2017)CrossRefGoogle Scholar
  31. 31.
    J. Yang, J. Hou, Y. Niu et al., Improved cycle capability of titanium-doped Fe2O3 anode material for Li-ion batteries. J. Alloy. Compd. 722, 414–419 (2017)CrossRefGoogle Scholar
  32. 32.
    C. Senthil, T. Kesavan, A. Bhaumik, M. Yoshio, M. Sasidharan, Nitrogen rich carbon coated TiO2 nanoparticles as anode for high performance lithium-ion battery. Electrochim. Acta 255, 417–427 (2017)CrossRefGoogle Scholar
  33. 33.
    J. Li, J. Huang, J. Li, Improved Li-ion diffusion process in TiO2/rGO anode for lithium-ion battery. J. Alloy. Compd. 727, 998–1005 (2017)CrossRefGoogle Scholar
  34. 34.
    X. Qian, X. Yang, L. Jin, High rate lithium-sulfur batteries enabled by mesoporous TiO2 nanotubes prepared by electrospinning. Mater. Res. Bull. 95, 402–408 (2017)CrossRefGoogle Scholar
  35. 35.
    R. Premila, C. Subbu, S. Rajendran, K. Selvakumar, Experimental investigation of nano filler TiO2 doped composite polymer electrolytes for lithium ion batteries. Appl. Surf. Sci. (2017)Google Scholar
  36. 36.
    X. Ge, Z. Li, L. Yin, Metal-Organic frameworks derived porous core/shell CoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 32, 117–124 (2017)CrossRefGoogle Scholar
  37. 37.
    Z. Yan, L. Liu, H. Shu, A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries. J. Power Sources 274, 8–14 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Getong Qin
    • 1
  • Min Zeng
    • 1
    Email author
  • Xing Wu
    • 1
  • Jianwu Wen
    • 1
  • Jing Li
    • 1
  1. 1.School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangPeople’s Republic of China

Personalised recommendations