Structural, chemical, and electrical properties of ZrO2/Ge system formed via oxidation/nitridation in N2O gas ambient

  • Zhen Ce Lei
  • Nor Ishida Zainal Abidin
  • Yew Hoong WongEmail author


The effects of oxidation/nitridation for 15 min at different temperatures (300–800 °C) on metal–oxide–semiconductor characteristics of sputtered Zr thin film based on Ge substrate in N2O ambient have been systematically investigated. The crystallinity of the film were evaluated by X-ray diffraction analysis, Raman analysis, and X-ray photoelectron spectrometer. The crystallite size and microstrain of film were estimated by Williamson–Hall plot analysis. Optical microscope was used to examine samples surface condition and high-resolution transmission electron microscopy was carried out to investigate the cross-sectional morphology. GeO2 was detected in samples with oxidation/nitridation temperature above 700 °C. A possible mechanism of Ge atomic diffusion and its rearrangement in ZrO2 has been proposed and explicated.



This project is financially supported by Frontier Research Grant (FRG) (Grant No.: FG008-17AFR) and Postgraduate Research Grant (PPP) (Grant Nos.: PG221-2015B and PG031-2016A) via University of Malaya (UM) and ScienceFund (Grant No.: 03-01-03-SF1083) via Ministry of Science, Technology and Innovation (MOSTI), Malaysia.


  1. 1.
    X.R. Wang et al., Annealing effect on the metal gate effective work function modulation for the Al/TiN/SiO2/p-Si structure. Microelectron. Eng. 88(5), 573–577 (2011)CrossRefGoogle Scholar
  2. 2.
    V.E. Vamvakas et al., Correlation between infrared transmission spectra and the interface trap density of SiO2 films. Microelectron. Reliab. 47(4–5), 834–837 (2007)CrossRefGoogle Scholar
  3. 3.
    D.G. Park, T.K. Kim, Effects of fluorine and chlorine on the gate oxide integrity of W/TiN/SiO2/Si metal-oxide-semiconductor structure. Thin Solid Films 483(1–2), 232–238 (2005)CrossRefGoogle Scholar
  4. 4.
    T. Sakurai et al., Electrical properties of the silicon oxide/Si structure formed with perchloric acid at 203 °C. Solid State Commun. 118(8), 391–394 (2001)CrossRefGoogle Scholar
  5. 5.
    C.A. Mack, Fifty years of Moore’s law. IEEE Trans. Semicond. Manuf. 24(2), 202–207 (2011)CrossRefGoogle Scholar
  6. 6.
    S.E. Thompson, S. Parthasarathy, Moore’s law: the future of Si microelectronics. Mater. Today 9(6), 20–25 (2006)CrossRefGoogle Scholar
  7. 7.
    V.K. Arora, D.C.Y. Chek, M.L.P. Tan, The Role of Ballistic Mobility and Saturation Velocity in Performance Evaluation of a Nano-CMOS Circuit. 2009 International Conference on Emerging Trends in Electronic and Photonic Devices and Systems (Electro-2009) (2009), p. 14Google Scholar
  8. 8.
    R. Pillarisetty, Academic and industry research progress in germanium nanodevices. Nature 479(7373), 324–328 (2011)CrossRefGoogle Scholar
  9. 9.
    Y. Kamata, High-k/Ge MOSFETs for future nanoelectronics. Mater. Today 11(1–2), 30–38 (2008)CrossRefGoogle Scholar
  10. 10.
    Y.H. Lee et al., Prediction of Logic Product Failure Due to Thin-Gate Oxide Breakdown. 2006 IEEE International Reliability Physics Symposium Proceedings—44th Annual (2006), p. 18Google Scholar
  11. 11.
    P.W. Peacock, J. Robertson, Bonding, energies, and band offsets of Si–ZrO2 and HfO2 gate oxide interfaces. Phys. Rev. Lett. 92(5), (2004)Google Scholar
  12. 12.
    K.H. Goh, A.S.M.A. Haseeb, Y.H. Wong, Physical and electrical properties of thermal oxidized Sm2O3 gate oxide thin film on Si substrate: influence of oxidation durations. Thin Solid Films 606, 80–86 (2016)CrossRefGoogle Scholar
  13. 13.
    K. Hetherin, S. Ramesh, Y.H. Wong, Formation of neodymium oxide by thermal oxidation of sputtered Nd thin film on Si substrate. J. Mater. Sci: Mater. Electron. 28(16), 11994–12003 (2017)Google Scholar
  14. 14.
    C.K. Maiti et al., Electrical characterization of TiO2 gate oxides on strained-Si. Microelectron. Eng. 72(1–4), 253–256 (2004)CrossRefGoogle Scholar
  15. 15.
    M. Tapajna et al., Gate oxide thickness dependence of the leakage current mechanism in Ru/Ta2O5/SiON/Si structures. Semicond. Sci. Technol. 25(7), 075007 (2010)CrossRefGoogle Scholar
  16. 16.
    C. Lee et al., The electrical and physical analysis of Pt gate/Al2O3/p-Si (100) with dual high-k gate oxide thickness for deep submicron complementary metal-oxide-semiconductor device with low-power and high reliability. J. Electron. Mater. 34(8), 1104–1109 (2005)CrossRefGoogle Scholar
  17. 17.
    B.W. Busch et al., Interface reactions of high-kappa Y2O3 gate oxides with Si. Appl. Phys. Lett. 79(15), 2447–2449 (2001)CrossRefGoogle Scholar
  18. 18.
    Y.H. Wong, K.Y. Cheong, ZrO2 thin films on Si substrate. J. Mater. Sci: Mater. Electron. 21(10), 980–993 (2010)Google Scholar
  19. 19.
    C.C. Li et al., Improved electrical characteristics of Ge pMOSFETs with ZrO2/HfO2 stack gate dielectric. IEEE Electron. Device Lett. 37(1), 12–15 (2016)CrossRefGoogle Scholar
  20. 20.
    Z.C. Lei et al., Effect of oxidation temperature on physical and electrical properties of ZrO2 thin-film gate oxide on Ge substrate. Thin Solid Films 642, 352–358 (2017)CrossRefGoogle Scholar
  21. 21.
    R. De Almeida, I.J.R. Baumvol, Reaction–diffusion in high-k dielectrics on Si. Surf. Sci. Rep. 49(1–3), 1–114 (2003)CrossRefGoogle Scholar
  22. 22.
    S. Dimitrijev et al., in Recent Major Advances in SiC, ed. by W.J. Choyke, H. Matsunami, G. Pensl (Taylor & Francis, New York, 2003)Google Scholar
  23. 23.
    M.L. Campbell, R.E. Mcclean, Kinetics of Neutral transition-metal atoms in the gas-phase—oxidation reactions of Ti(a(3)F) from 300-K to 600-K. J. Phys. Chem. 97(30), 7942–7946 (1993)CrossRefGoogle Scholar
  24. 24.
    K. Maeda et al., Dependence of activity and stability of germanium nitride powder for photocatalytic overall water splitting on structural properties. Chem. Mater. 19(16), 4092–4097 (2007)CrossRefGoogle Scholar
  25. 25.
    Y.G. Lee et al., Effect of high-pressure ammonia treatment on the activity of Ge3N4 photocatalyst for overall water splitting. J. Phys. Chem. B 110(35), 17563–17569 (2006)CrossRefGoogle Scholar
  26. 26.
    Y. Leng, Materials Characterization: Introduction to Microscopic and Spectroscopic Methods (Wiley, New York, 2009)Google Scholar
  27. 27.
    Q. Tong et al., Rhenium-promoted Pt/WO3/ZrO2: an efficient catalyst for aqueous glycerol hydrogenolysis under reduced H-2 pressure. RSC Adv. 6(89), 86663–86672 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Rawat et al., Micro-Raman and electronic structure study on kinetics of electronic excitations induced monoclinic-to-tetragonal phase transition in zirconium oxide films. RSC Adv. 6(106), 104425–104432 (2016)CrossRefGoogle Scholar
  29. 29.
    S. Vasanthavel, S. Kannan, Structural investigations on the tetragonal to cubic phase transformations in zirconia induced by progressive yttrium additions. J. Phys. Chem. Solids 112, 100–105 (2018)CrossRefGoogle Scholar
  30. 30.
    G. Sponchia et al., Orthorhombic phase stabilization and transformation phase process in zirconia tantalum-doped powders and spark plasma sintering systems. J. Eur. Ceram. Soc. 37(10), 3393–3401 (2017)CrossRefGoogle Scholar
  31. 31.
    A. Lignie et al., Raman study of alpha-quartz-type Ge1-xSixO2 (0 < x < = 0.067) single crystals for piezoelectric applications. RSC Adv. 5(69), 55795–55800 (2015)CrossRefGoogle Scholar
  32. 32.
    G. Kartopu et al., On the origin of the 2.2–2.3 eV photoluminescence from chemically etched germanium. J. Lumin. 101(4), 275–283 (2003)CrossRefGoogle Scholar
  33. 33.
    P. Kroll, Pathways to metastable nitride structures. J. Solid State Chem. 176(2), 530–537 (2003)CrossRefGoogle Scholar
  34. 34.
    S.K. Deb et al., The Raman spectra of the hexagonal and cubic (spinel) forms of Ge3N4: an experimental and theoretical study. Solid State Commun. 114(3), 137–142 (2000)CrossRefGoogle Scholar
  35. 35.
    X. Fan, H. Liu, X. Zhang, Identification of optimal ALD process conditions of Nd2O3 on Si by spectroscopic ellipsometry. Appl. Phys. A 114(2), 545–550 (2014)CrossRefGoogle Scholar
  36. 36.
    A. Laha et al., Epitaxial multi-component rare earth oxide for high-K application. Thin Solid Films 515(16), 6512–6517 (2007)CrossRefGoogle Scholar
  37. 37.
    T.-M. Pan, J.-D. Lee, W.-W. Yeh, Influence of oxygen content on the structural and electrical characteristics of thin neodymium oxide gate dielectrics. J. Appl. Phys. 101(2), 024110 (2007)CrossRefGoogle Scholar
  38. 38.
    J. Moureau et al., High accuracy measurements of Mo isotopes by MC-ICPMS with in situ Mo/Zr separation using N2O in a collision reaction cell. J. Anal. At. Spectrom. 23(11), 1538–1544 (2008)CrossRefGoogle Scholar
  39. 39.
    L. Khomenkova et al., Effect of Ge content on the formation of Ge nanoclusters in magnetron-sputtered GeZrOx-based structures. Nanoscale Res. Lett. 12. (2017)Google Scholar
  40. 40.
    S.K. Sahari et al., Kinetics of Thermally Oxidation of Ge(100) Surface. 15th International Conference on Thin Films (Ictf-15). (2013), p. 417Google Scholar
  41. 41.
  42. 42.
    Y.H. Wong, K.Y. Cheong, Thermal oxidation and nitridation of sputtered Zr thin film on Si via N2O gas. J. Alloys Compd. 509(35), 8728–8737 (2011)CrossRefGoogle Scholar
  43. 43.
    E. Marin et al., Wear and surface degradation of commercial ZTA femoral heads under boundary lubrication conditions. J. Mech. Behav. Biomed. Mater. 65, 616–626 (2017)CrossRefGoogle Scholar
  44. 44.
    F.M. John et al., Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation Physical Electronics Division, Eden Prairie, 1992)Google Scholar
  45. 45.
    S. Sinha, S. Badrinarayanan, A. Sinha, Interaction of oxygen with Zr76Fe24 metglass: an X-ray photoelectron spectroscopy study. J. Less Common Met. 125, 85–95 (1986)CrossRefGoogle Scholar
  46. 46.
    O. Bethge et al., Stability of La2O3 and GeO2 passivated Ge surfaces during ALD of ZrO2 high-k dielectric. Appl. Surf. Sci. 258(8), 3444–3449 (2012)CrossRefGoogle Scholar
  47. 47.
    Q. Xie et al., Germanium surface passivation and atomic layer deposition of high-k dielectrics-a tutorial review on Ge-based MOS capacitors. Semicond. Sci. Technol. 27(7), (2012)Google Scholar
  48. 48.
    F. Wei, H.L. Tu, J. Du, Twin-free (111)-oriented epitaxial Nd2Hf2O7 thin films on Ge(111) for high-k dielectrics. J. Phys. D 42(18), 185301 (2009)CrossRefGoogle Scholar
  49. 49.
    L.G. Kim et al., Enhanced electrooptical characteristics of twisted nematic liquid crystal display with ZrO2 thin films. IEEE Electron. Device Lett. 33(8), 1153–1155 (2012)CrossRefGoogle Scholar
  50. 50.
    Q.C. Zhang et al., Preparation and characterization of polymer-derived Zr/Si/C multiphase ceramics and microspheres with electromagnetic wave absorbing capabilities. J. Eur. Ceram. Soc. 37(5), 1909–1916 (2017)CrossRefGoogle Scholar
  51. 51.
    M.K. Bera et al., TiO2/GeOxNy stacked gate dielectrics for Ge-MOSFETs. Semicond. Sci. Technol. 22(12), 1352–1361 (2007)CrossRefGoogle Scholar
  52. 52.
    R.T. Kouzes, Z. Zhu, M.H. Engelhard, Germanium-76 Sample Analysis: Revision 3. 2011, Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)Google Scholar
  53. 53.
    X. Guo, Y.-Q. Sun, K. Cui, Darkening of zirconia: a problem arising from oxygen sensors in practice. Sens. Actuators B 31(3), 139–145 (1996)CrossRefGoogle Scholar
  54. 54.
    S.M. Sze, Semiconductor Devices: Physics and Technology (Wiley, New York, 2008)Google Scholar
  55. 55.
    Q. Mistarihi et al., Fabrication of ZrO2-based nanocomposites for transuranic element-burning inert matrix fuel. Nuclear Eng. Technol. 47(5), 617–623 (2015)CrossRefGoogle Scholar
  56. 56.
    F. Boucard et al., A Model for Boron TED in Silicon: Full Couplings of Dopant with Free and Clustered Interstitials. MRS Online Proceedings Library Archive. (2002), p. 717Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations