Impurity-induced unusual microstructural evolution and mechanical property in Sn/Cu solder joints

  • Hsuan-Ling Hsu
  • Hsuan Lee
  • Ping-Heng Wu
  • Yee-Wen Yen
  • Chih-Ming ChenEmail author


The use of functional additives in the electroplating process results in an impurity incorporation in the Cu plated layer. A high level of impurity residual has been recognized as a severe reliability problem to the Sn/Cu joints because voids are prone to form at the Sn/Cu interface in the thermal aging process. This study focuses on the effect of aging temperature on the formation and distribution of voids. Two electroplated Cu substrates and one rolled Cu foil were joined Sn balls to prepare the Sn/Cu joints for thermal aging in the range of 100–200 °C. The microstructural examination results indicated that the additive formula of polyethylene glycol (PEG) and Cl resulted in massive void formation at the Sn/Cu interface, and the distribution of voids showed a strong dependence on the aging temperature. The strong temperature dependence of void distribution led to an unusual evolution of microstructure and shear strength in the Sn/Cu joints.



This work is supported by the Ministry of Science and Technology of Taiwan through Grant No. MOST-105-2221-E-005-087.


  1. 1.
    J.R. Davis, Copper and Copper Alloys, 1st edn. (ASM International, Materials Park, OH, 2001), pp. 127–152Google Scholar
  2. 2.
    K.K. Chakravorty, C.P. Chien, J.M. Cech, M.H. Tanielian, P.L. Young, IEEE Trans. Comp., Hybrids, Manuf. Technol. 13, 200 (1990)CrossRefGoogle Scholar
  3. 3.
    X. Ye, M. De Bonte, J.P. Celis, J.R. Roos, J. Electrochem. Soc. 139, 1592 (1992)CrossRefGoogle Scholar
  4. 4.
    T. Kobayashi, J. Kawasaki, K. Mihara, H. Honma, Electrochim. Acta 47, 85 (2001)CrossRefGoogle Scholar
  5. 5.
    D. Josell, T.P. Moffat, J. Electrochem. Soc. 165, D23 (2018)CrossRefGoogle Scholar
  6. 6.
    Z.V. Feng, X. Li, A.A. Gewirth, J. Phys. Chem. B 107, 9415 (2003)CrossRefGoogle Scholar
  7. 7.
    Y.D. Chiu, W.P. Dow, J. Electrochem. Soc. 160, D3021 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Tan, C. Guymon, D.R. Wheeler, J.N. Harb, J. Electrochem. Soc. 154, D78 (2007)CrossRefGoogle Scholar
  9. 9.
    Y. Jin, Y. Sui, L. Wen, F. Ye, M. Sun, Q. Wang, J. Electrochem. Soc. 160, D20 (2013)CrossRefGoogle Scholar
  10. 10.
    S.W. Chen, C.M. Chen, W.C. Liu, J. Electron. Mater. 27, 1193 (1998)CrossRefGoogle Scholar
  11. 11.
    C.P. Lin, C.M. Chen, Y.W. Yen, J. Alloys Compd. 591, 297 (2014)CrossRefGoogle Scholar
  12. 12.
    J.Y. Wu, H. Lee, C.H. Wu, C.F. Lin, W.P. Dow, C.M. Chen, J. Electrochem. Soc. 161, D522 (2014)CrossRefGoogle Scholar
  13. 13.
    H.K. Cheng, C.W. Huang, H. Lee, Y.L. Wang, T.F. Liu, C.M. Chen, J. Alloys Compd. 622, 529 (2015)CrossRefGoogle Scholar
  14. 14.
    S. Kumar, C.A. Handwerker, M.A. Dayananda, J. Phase Equilib. Diff. 32, 309 (2011)CrossRefGoogle Scholar
  15. 15.
    J.Y. Kim, J. Yu, S.H. Kim, Acta Mater. 57, 5001 (2009)CrossRefGoogle Scholar
  16. 16.
    S.H. Kim, J. Yu, J. Mater. Res. 25, 1854 (2010)CrossRefGoogle Scholar
  17. 17.
    P. Borgesen, L. Yin, P. Kondos, Microelectron. Reliab. 52, 1121 (2012)CrossRefGoogle Scholar
  18. 18.
    J. Yu, J.Y. Kim, Acta Mater. 56, 5514 (2008)CrossRefGoogle Scholar
  19. 19.
    Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen, D.W. Henderson, E.J. Cotts, N. Dimitrov, J. Appl. Electrochem. 38, 1695 (2008)CrossRefGoogle Scholar
  20. 20.
    T.Y. Yu, H. Lee, H.L. Hsu, W.P. Dow, H.K. Cheng, K.C. Liu, C.M. Chen, J. Electrochem. Soc. 163, D734 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Lee, T.Y. Yu, H.K. Cheng, K.C. Liu, P.F. Chan, W.P. Dow, C.M. Chen, J. Electrochem. Soc. 164, D457 (2017)CrossRefGoogle Scholar
  22. 22.
    C.C. Chen, C.H. Yang, Y.S. Wu, C.E. Ho, Surf. Coat. Technol. 320, 489 (2017)CrossRefGoogle Scholar
  23. 23.
    P.T. Lee, Y.S. Wu, P.C. Lin, C.C. Chen, W.Z. Hsieh, C.E. Ho, Surf. Coat. Technol. 320, 559 (2017)CrossRefGoogle Scholar
  24. 24.
    Y. Liu, L. Yin, S. Bliznakov, P. Kondos, P. Borgesen, D.W. Henderson, C. Parks, J. Wang, E.J. Cotts, N. Dimitrov, IEEE Trans. Compon. Pack. Technol. 33, 127 (2010)CrossRefGoogle Scholar
  25. 25.
    L. Yin, P. Borgesen, J. Mater. Res. 26, 455 (2011)CrossRefGoogle Scholar
  26. 26.
    K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, K.N. Tu, J. Appl. Phys. 97, 024508 (2005)CrossRefGoogle Scholar
  27. 27.
    Y.J. Chen, C.K. Chung, C.R. Yang, C.R. Kao, Microelectron. Reliab. 53, 47 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Chung Hsing UniversityTaichungTaiwan
  2. 2.Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan

Personalised recommendations