Effect of hexamethylenetetramine on the properties of electrodeposited ZnO thin films for dye sensitized solar cell applications

  • T. Marimuthu
  • N. AnandhanEmail author
  • R. Thangamuthu
  • S. Surya


Zinc oxide (ZnO) thin films were obtained on fluorine doped tin oxide substrates by pyrolyzing the electrodeposited zinc hydroxide chloride thin films. The effect of hexamethylenetetramine (HMTA) concentrations on the structural, morphological, vibrational and optical properties was investigated. The ZnO growth orientation is changed from (101) to (002) plane as the HMTA concentrations get increased from 0 to 9 mM. The well-defined hexagonal nanorods and nanowires structures are observed for ZnO thin films deposited in the absence and presence of HMTA. The increase in intensity of E2 (high) vibrational mode, near band edge emission and UV absorbance confirms the ZnO nanowires synthesized in the solution containing 9 mM HMTA having better crystallinity, lesser atomic defects and higher dye loading, respectively. The efficiency of dye sensitized solar cells (DSSCs) based on nanorods and nanowires synthesized in the solutions containing 0 and 9 mM HMTA is 0.36 and 1.02%, respectively. The DSSC based on nanowires photoanode has a higher Rrec, τn, σn and Ln than another DSSC.



Author T. Marimuthu [Student ID: 201213-BSR-10183-2] wishes to thank University Grants Commission (UGC), New Delhi to provide the financial support through UGC-BSR scheme to study the nanostructures.


  1. 1.
    C. Zhao, D. Child, Y. Hu, N. Robertson, D. Gibson, S.C. Wang, Y.Q. Fu, RSC Adv. 4, 61153–61159 (2014)CrossRefGoogle Scholar
  2. 2.
    Y. Gao, M. Nagai, Langmuir 22, 3936–3940 (2006)CrossRefGoogle Scholar
  3. 3.
    K. Mahmood, H.W. Kang, R. Munir, H.J. Sung, RSC Adv. 3, 25136–25144 (2013)CrossRefGoogle Scholar
  4. 4.
    O. Lupan, T. Pauporte, B. Viana, J. Phys. Chem. C 114, 14781–14785 (2010)CrossRefGoogle Scholar
  5. 5.
    A. Umar, H. Algarni, S.H. Kim, M.S. Al-Assiri, Ceram. Int. 15, 13215–13222 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, C. Liu, F. Gong, B. Jiu, F. Li, Mater. Lett. 186, 7–11 (2017)CrossRefGoogle Scholar
  7. 7.
    E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, R. Martins, Thin Solid Films 487, 205–211 (2005)CrossRefGoogle Scholar
  8. 8.
    T. Marimuthu, N. Anandhan, R. Thangamuthu, M. Mummoorthi, S. Rajendran, G. Ravi, Mater. Res. Express 2, 015502 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Rashid, M.A. Barakat, N. Salah, S.S. Habib, RSC Adv. 4, 56892–56899 (2014)CrossRefGoogle Scholar
  10. 10.
    T. Marimuthu, N. Anandhan, R. Thangamuthu, M. Mummoorthi, G. Ravi, J. Alloys Compd. 677, 211–218 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Henni, A. Merrouche, L. Telli, A. Karar, J. Electroanal. Chem. 763, 149–154 (2016)CrossRefGoogle Scholar
  12. 12.
    S.-J. Lee, S.K. Park, C.R. Park, J.Y. Lee, J. Park, Y.R. Do, J. Phys. Chem. C 111, 11793–11801 (2017)CrossRefGoogle Scholar
  13. 13.
    D. Pradhan, K.T. Leung, Langmuir 24, 9707–9716 (2008)CrossRefGoogle Scholar
  14. 14.
    X. Kang, C. Jia, Z. Wan, J. Zhuang, J. Feng, RSC Adv. 5, 16678–16683 (2015)CrossRefGoogle Scholar
  15. 15.
    J.R.R. Bortoleto, M. Chaves, A.M. Rosa, E.P. Silva, S.F. Durrant, L.D. Trino, P.N. Lisboa-Filho, Appl. Surf. Sci. 33, 210–215 (2015)CrossRefGoogle Scholar
  16. 16.
    D. Calestani, M.Z. Zha, L. Zanotti, M. Villani, A. Zappettini, Cryst. Eng. Comm. 13, 1707–1712 (2011)CrossRefGoogle Scholar
  17. 17.
    S. Nicolay, M. Benkhaira, L. Ding, J. Escarre, G. Bugnon, F. Meillaud, C. Ballif, Sol. Energy Mater. Sol. Cells 105, 46–52 (2012)CrossRefGoogle Scholar
  18. 18.
    M.G. Tsoutsouva, C.N. Panagopoulos, D. Papadimitriou, I. Fasaki, M. Kompitsas, Mater. Sci. Eng. B 176, 480–483 (2011)CrossRefGoogle Scholar
  19. 19.
    T. Marimuthu, N. Anandhan, Mater. Res. Bull. 95, 616–624 (2017)CrossRefGoogle Scholar
  20. 20.
    T. Shinagawa, M. Izaki, RSC Adv. 4, 30999–31002 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Tang, J. Chen, D. Greiner, A. Lorenz, R. Baier, J. Lehmann, S. Sadewasser, M.C. Lux-Steiner, J. Phys. Chem. C 115, 5239–5243 (2011)CrossRefGoogle Scholar
  22. 22.
    H. Chen, L. Zhu, H. Liu, W. Li, Nanotechnology 23, 075402 (2012)CrossRefGoogle Scholar
  23. 23.
    L. Roza, I. Iwantono, G. Andika, A.A. Umar, M.Y. Abd Rahman, AIP Conf. Proc, 1930, 020001 (2018)CrossRefGoogle Scholar
  24. 24.
    T. Marimuthu, N. Anandhan, R. Thangamuthu, S. Surya, J. Alloys Compd. 693, 1011–1019 (2017)CrossRefGoogle Scholar
  25. 25.
    F. Xu, M. Dai, Y. Lu, L. Sun, Phys. Chem. C. 144, 2776–2782 (2010)CrossRefGoogle Scholar
  26. 26.
    B.N. Illy, B. Ingham, M.P. Ryan, Cryst. Growth Des. 10, 1189–1193 (2010)CrossRefGoogle Scholar
  27. 27.
    S.K. Sharma, A. Rammohan, A. Sharma, J. Colloid Interface Sci. 344, 1–9 (2010)CrossRefGoogle Scholar
  28. 28.
    J.-H. Tian, J. Hu, S.-S. Li, F. Zhang, J. Liu, J. Shi, X. Li, Z.-Q. Tian, Y. Chen, Nanotechnology 22, 245601 (2011)CrossRefGoogle Scholar
  29. 29.
    J. Elias, R. Tena-Zaera, C. Levy-Clement, J. Phys. Chem. C 112, 5736–5741 (2008)CrossRefGoogle Scholar
  30. 30.
    D. Pradhan, K.T. Leung, J. Phys. Chem. C 112, 1357–1364 (2008)CrossRefGoogle Scholar
  31. 31.
    L.E. Greene, B.D. Yuhas, M. Law, D. Zitoun, P. Yang, Inorg. Chem. 45, 7535–7543 (2006)CrossRefGoogle Scholar
  32. 32.
    D. Pradhan, M. Kumar, Y. Ando, K.T. Leung, ACS Appl. Mater. Interfaces 4, 789–796 (2009)CrossRefGoogle Scholar
  33. 33.
    B. Panigrahy, M. Aslam, D. Bahadur, J. Phys. Chem. C 114, 11758–11763 (2010)CrossRefGoogle Scholar
  34. 34.
    O. Lupan, T. Pauporte, B. Viana, I.M. Tiginyanu, V.V. Ursaki, R. Cortes, ACS Appl. Mater. Interfaces 2, 2083–2090 (2010)CrossRefGoogle Scholar
  35. 35.
    O. Lupan, T. Pauporte, T.L. Bahers, I. Ciofini, B. Viana, J. Phys. Chem. C 115, 14548–14558 (2011)CrossRefGoogle Scholar
  36. 36.
    A.B. Djurisic, Y.H. Leung, Small 2, 944–961 (2006)CrossRefGoogle Scholar
  37. 37.
    N. Shakti, A. Prakash, T. Mandal, M. Katiyar, Mater. Sci. Semicond. Process. 20, 55–60 (2014)CrossRefGoogle Scholar
  38. 38.
    H. Chen, J. Ding, W. Guo, G. Chen, S. Ma, RSC Adv. 3, 12327–12337 (2013)CrossRefGoogle Scholar
  39. 39.
    T. Yoshida, K. Terada, D. Schlettwein, T. Oekermann, T. Sugiura, H. Minoura, Adv. Mater. 12, 1214–1217 (2000)CrossRefGoogle Scholar
  40. 40.
    Q. Zhang, T.P. Chou, B. Russo, S.A. Jenekhe, G. Cao, Angew. Chem. Int. Ed. 47, 2402–2406 (2008)CrossRefGoogle Scholar
  41. 41.
    W.-Q. Wu, B.-X. Lei, H.S. Rao, Y.-F. Xu, Y.-F. Wang, C.-Y. Su, D.B. Kuang, Sci. Rep. 3, 1352 (2013)CrossRefGoogle Scholar
  42. 42.
    H.-Y. Chen, D.-B. Kuang, C.-Y. Su, J. Mater. Chem. 22, 15475–15489 (2012)CrossRefGoogle Scholar
  43. 43.
    S. Zhu, L. Shan, X. Chen, L. He, J. Chen, M. Jiang, X. Xie, Z. Zhou, RSC Adv. 3, 2910–2916 (2013)CrossRefGoogle Scholar
  44. 44.
    Y. Li, Y. Wang, C. Chen, A. Pang, M. Wei, Chem. Eur. J. 18, 11716–11726 (2012)CrossRefGoogle Scholar
  45. 45.
    N. Abraham, A. Rufus, C. Unni, D. Philip, Spectrochim. Acta A 2000, 116–126 (2018)CrossRefGoogle Scholar
  46. 46.
    H. Tain, L. Hu, C. Zhang, S. Chen, J. Sheng, L. Mo, W. Liu, S. Dai, J. Mater. Chem. 21, 863–868 (2011)CrossRefGoogle Scholar
  47. 47.
    C. Magne, T. Mathieu, M. Urien, M. Gratzel, T. Pauporte, J. Mater. Chem. A 1, 2079–2088 (2013)CrossRefGoogle Scholar
  48. 48.
    B.F. Martinson, S. Goes, F. Fabregat-Santiago, J. Bisquert, M.J. Pellin, J.T. Hupp, J. Phys. Chem. A 113, 4015–4021 (2009)CrossRefGoogle Scholar
  49. 49.
    F.D. Nayeri, M. Kolahdouz, E. Asl-Soleimani, S. Mohajerzadeh, J. Alloys Compd. 633, 359–365 (2015)CrossRefGoogle Scholar
  50. 50.
    G. Yang, Q. Wang, C. Miao, Z. Bu, W. Guo, J. Mater. Chem. 1, 3112–3117 (2013)CrossRefGoogle Scholar
  51. 51.
    C.-Y. Lin, Y.-H. Lai, H.-W. Chen, J.-G. Chen, C.-W. Kung, R. Vittal, K.-C. Ho, Energy Environ. Sci. 4, 3448–3455 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Materials and Thin Film Physics Lab, Department of PhysicsAlagappa UniversityKaraikudiIndia
  2. 2.Electrochemical Materials Science DivisionCSIR-Central Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations