Effect of potassium doping for ultrasonic sprayed Cu2SnS3 thin films for solar cell application

  • Chengzhi RuanEmail author
  • Jiahua TaoEmail author
  • Chengyun Zhu
  • Chen Chen


In this work, potassium-containing Cu2SnS3 thin films (KxCu2−xSnS3) were fabricated by a simple and low-cost ultrasonic spray pyrolysis method on glass substrates with different potassium doping concentration. Effects of various potassium concentrations on the structural, morphological and optical properties of the films were systematically investigated. The results indicate that potassium doping can well enhance the growth of particle size and decrease the band gap of the film from to 1.55 to 1.26 eV. Solar cell devices with a structure of glass/FTO/K2−xCu2SnS3/CdS/ZnO/AZO have been prepared and obvious solar cell device performance improvement has been observed by 2 at% potassium doping. This potassium-containing Cu2SnS3 thin films could be a promising absorber material for high efficiency solar cell.



This project was financed by the National Science Foundation of China (No. 61704057), Natural Science Foundation of Fujian Province (No. 2018J01471), the China Postdoctoral Science Foundation (Nos. 2016M601543 and 2018T110374), and natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No. 17KJD240002).


  1. 1.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu et al., Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. (2014). Google Scholar
  2. 2.
    M. Nakashima, T. Yamaguchi, H. Itani, J. Sasano, M. Izaki, Cu2SnS3 thin film solar cells prepared by thermal crystallization of evaporated Cu/Sn precursors in sulfur and tin atmosphere. Phys. Status Solidi C 12, 761–764 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Bouaziz, J. Ouerfelli, M. Amlouk, S. Belgacem, Structural and optical properties of Cu3SnS4 sprayed thin films. Phys. Status Solidi A 204, 3354–3360 (2007)CrossRefGoogle Scholar
  4. 4.
    K. Anuar, S.N. Ho, W.T. Tan, M.S. Atan, D. Kuang, H.M. Jelas et al., Effects of solution concentration on the properties of Cu4SnS4 thin films. Mater. Sci. 14, 204–209 (2008)Google Scholar
  5. 5.
    L.L. Baranowski, P. Zawadzki, S. Christensen, D. Nordlund, S. Lany, A.C. Tamboli et al., Control of doping in Cu2SnS3 through defects and alloying. Chem. Mater. 26, 4951–4959 (2014)CrossRefGoogle Scholar
  6. 6.
    P.A. Fernandes, P. Salomé, A.F. Da Cunha, A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. J. Phys. D: Appl. Phys. 43, 215403 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Nakashima, J. Fujimoto, T. Yamaguchi, M. Izaki, Cu2SnS3 thin-film solar cells fabricated by sulfurization from NaF/Cu/Sn stacked precursor. Appl. Phys. Express 8, 42303 (2015)CrossRefGoogle Scholar
  8. 8.
    H. Zhou, T. Song, W. Hsu, S. Luo, S. Ye, H. Duan et al., Rational defect passivation of Cu2ZnSn (S, Se)4 photovoltaics with solution-processed Cu2ZnSnS4: Na nanocrystals. J. Am. Chem. Soc. 135, 15998–16001 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Nakashima, J. Fujimoto, T. Yamaguchi, J. Sasano, M. Izaki, KF addition to Cu2SnS3 thin films prepared by sulfurization process. Jpn. J. Appl. Phys. 56, 2C–4C (2017)Google Scholar
  10. 10.
    P.A. Fernandes, P. Salomé, A.F. Da Cunha, CuxSnSx+ 1 (x = 2, 3) thin films grown by sulfurization of metallic precursors deposited by DC magnetron sputtering. Phys. Status Solidi C 7, 901–904 (2010)Google Scholar
  11. 11.
    D. Avellaneda, M. Nair, P.K. Nair, Cu2SnS3 and Cu4SnS4 thin films via chemical deposition for photovoltaic application. J. Electrochem. Soc. 157, D346–D352 (2010)CrossRefGoogle Scholar
  12. 12.
    D. Tiwari, T.K. Chaudhuri, T. Shripathi, U. Deshpande, R. Rawat, Non-toxic, earth-abundant 2% efficient Cu2SnS3 solar cell based on tetragonal films direct-coated from single metal-organic precursor solution. Sol. Energy Mater. Sol. Cells 113, 165–170 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Bouaziz, M. Amlouk, S. Belgacem, Structural and optical properties of Cu2SnS3 sprayed thin films. Thin Solid Films 517, 2527–2530 (2009)CrossRefGoogle Scholar
  14. 14.
    R.B. Ettlinger, A. Cazzaniga, S. Canulescu, N. Pryds, J. Schou, Pulsed laser deposition from ZnS and Cu2SnS3 multicomponent targets. Appl. Surf. Sci. 336, 385–390 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Guo, W. Cheng, J. Jiang, S. Zuo, F. Shi, J. Chu, The structural, morphological and optical–electrical characteristic of Cu2XSnS4 (X: Cu, Mg) thin films fabricated by novel ultrasonic co-spray pyrolysis. Mater. Lett. 172, 68–71 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Tao, J. Liu, J. He, K. Zhang, J. Jiang, L. Sun et al., Synthesis and characterization of Cu2ZnSnS4 thin films by the sulfurization of co-electrodeposited Cu–Zn–Sn–S precursor layers for solar cell applications. RSC Adv. 4, 23977–23984 (2014)CrossRefGoogle Scholar
  17. 17.
    Z.K. Yuan, S. Chen, Y. Xie, J.S. Park, H. Xiang, X.G. Gong et al., Na-diffusion enhanced p-type conductivity in Cu(In,Ga) Se2: a new mechanism for efficient doping in semiconductors. Adv. Energy Mater. (2016). Google Scholar
  18. 18.
    M. Gusain, P. Rawat, R. Nagarajan, Influence of reaction conditions for the fabrication of Cu2SnS3 and Cu3SnS4 in ethylene glycol. Mater. Res. Express 2, 55501 (2015)CrossRefGoogle Scholar
  19. 19.
    J.Y. Lee, I.Y. Kim, M.P. Surywanshi, U.V. Ghorpade, D.S. Lee, J.H. Kim, Fabrication of Cu2SnS3 thin film solar cells using Cu/Sn layered metallic precursors prepared by a sputtering process. Sol. Energy 145, 27–32 (2017)CrossRefGoogle Scholar
  20. 20.
    I. Khatri, K. Shudo, J. Matsuura, M. Sugiyama, T. Nakada, Comparative study of water and ammonia rinsing processes of potassium fluoride-treated Cu(In,Ga)Se2 thin film solar cells. Jpn. J. Appl. Phys. 56, 8M–12M (2017)CrossRefGoogle Scholar
  21. 21.
    Z. Tong, C. Yan, Z. Su, F. Zeng, J. Yang, Y. Li et al., Effects of potassium doping on solution processed kesterite Cu2ZnSnS4 thin film solar cells. Appl. Phys. Lett. 105, 223903 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical and Electrical EngineeringWuyi UniversityWuyishanChina
  2. 2.School of Physics and Materials ScienceEast China Normal UniversityShanghaiChina
  3. 3.School of New Energy and Electronic EngineeringYancheng Teachers UniversityYanchengChina
  4. 4.School of Electrical and Information EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations