Advertisement

Studies on linear and nonlinear optical properties of 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate crystal

  • D. Bharath
  • S. Kalainathan
  • D. Anbuselvi
Article
  • 64 Downloads

Abstract

4-N,N-dimethylamino-4′-N′-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS) terahertz organic material has been synthesized by the knoevenagel condensation method. DSTMS single crystals were grown in methanol by slow-cooling method. The linear optical property of DSTMS crystal has been studied using UV–Vis-NIR spectroscopy in the wavelength range 190–1100 nm and optical constants are calculated theoretically. The magnitude of nonlinear refractive index (10−10 m2/W), nonlinear absorption (10−3 m/W) and third order nonlinear susceptibility (10−4 esu) has been studied using Z-scan technique. Dielectric property of DSTMS crystal has been studied at frequency range 50 Hz–5 MHz. The electronic properties such as valence electron plasma energy, penn gap, fermi energy, electronic polarization, electric susceptibility of the grown crystal has been studied. Photoluminescence spectrum was recorded using xenon lamp in the range of 450–700 nm. Laser optical damage threshold of DSTMS crystal was calculated (3.57 GW/cm2) using pulsed Nd-YAG laser (1064 nm) of repetition rate 10 ns. The refractive index of the crystal (1.571) has been measured using Abbe’s Refractometer. The optical limiting behaviour of DSTMS crystal has been studied using Nd-YAG laser. The response time (τ) of optical limiting power for the crystals is 10−11 s.

Notes

Acknowledgements

The authors thank the management of VIT University Vellore for proving the excellent research facilities.

References

  1. 1.
    W.M. Laidlaw, R.G. Denning, T. Verbiest, E. Chauchard, A. Persoons, Nature 363, 58 (1993)CrossRefGoogle Scholar
  2. 2.
    R.W. Boyd, Nonlinear Optics, 3rd edn. (Elsevier publications, New York, 2011)Google Scholar
  3. 3.
    S.R. Marder, B. Kippelen, A.K.Y. Jen, N. Peyghambarian, Nature 388, 845 (1997)CrossRefGoogle Scholar
  4. 4.
    P.D. Calvert Nazar Azoz, M. Kadim, A.J. McCaffery, K.R. Seddon, Nature 344, 49 (1990)CrossRefGoogle Scholar
  5. 5.
    S.R. Marder, J.W. Perry, W.P. Schaefer, Science 245, 626 (1989)CrossRefGoogle Scholar
  6. 6.
    S.R. Marder, J.W. Perry, C.P. Yakymyshyd, Chem. Mater. 6, 1137 (1994)CrossRefGoogle Scholar
  7. 7.
    Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, P. Günter, Adv. Funct. Mater. 17, 2018 (2007)CrossRefGoogle Scholar
  8. 8.
    M. Stillhart, A. Schneider, P. Günter, J. Opt. Soc. Am. B. 25, 1914 (2008)CrossRefGoogle Scholar
  9. 9.
    L. Mutter, F.D. Brunner, Z. Yang, M. Jazbinsek, P. Günter, J. Opt. Soc 24, 2556 (2007)CrossRefGoogle Scholar
  10. 10.
    P.J. Kim, M. Jazbinsek, O.P. Kwon, Cryst. Growth Des. 11, 3060 (2011)CrossRefGoogle Scholar
  11. 11.
    G.J. Ashwell, G. Jefferies, D.G. Hamilton, D.E. Lynch, M.P.S. Roberts, G.S. Bahra, C.R. Brown, Nature, 375, 385 (1995)CrossRefGoogle Scholar
  12. 12.
    Y. Li, J.X. Zhang, P.Z. Fu, Y.C. Wu, Acta Cryst E67, o823 (2011)Google Scholar
  13. 13.
    N. Tonouchi, Nat. Photonics 1, 97 (2007)CrossRefGoogle Scholar
  14. 14.
    B. Ferguson, X.C. Zhang, Nat. Mater. 1, 26 (2002)CrossRefGoogle Scholar
  15. 15.
    A. Schneider, M. Stillhart, P. Günter, Opt. Express 14, 5376 (2006)CrossRefGoogle Scholar
  16. 16.
    P.Y. Han, M. Tani, F. Pan, X.C. Zhang, Opt. Lett 25, 675 (2000)CrossRefGoogle Scholar
  17. 17.
    X.C. Zhang, X.F. Ma, Y. Jin, T.M. Lu, E.P. Boden, P.D. Phelps, K.R. Stewart, C.P. Yakymyshyn, Appl. Phys. Lett. 61, 3080 (1992)CrossRefGoogle Scholar
  18. 18.
    J. Tauc, The Optical Properties of Solids (North-Holland, Amsterdam, 1970)Google Scholar
  19. 19.
    D.D.O. Eya, A.J. Ekpunobi, C.E. Okeke, Acad. Open Internet J. 17, 13 (2006)Google Scholar
  20. 20.
    B.M. Boaz, B. Varghese, C.Justin Raj, S. Jerome, Das, Mater. Sci. Eng., B 136, 57 (2007)CrossRefGoogle Scholar
  21. 21.
    K.B.R. Varma, K.V. Rao, Bull. Mater. Sci. 5, 39 (1983)CrossRefGoogle Scholar
  22. 22.
    N. Rezlescue, E. Rezlescue, Phys. Status Solidi A 23, 575 (1974)CrossRefGoogle Scholar
  23. 23.
    N.M. Ravindra, R.P. Bharadwaj, K. Sunil Kumar, V.K. Srivastava, Model based studies of some optical and electronic properties of narrow and wide gap materials. Infrared Phys. 21, 369–381 (1981)CrossRefGoogle Scholar
  24. 24.
    D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)CrossRefGoogle Scholar
  25. 25.
    M. Sheik-bahae, A.A. Said, T. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 4 (1990)CrossRefGoogle Scholar
  26. 26.
    K. Sangwal, Mater. Chem. Phys. 63, 145 (2000)CrossRefGoogle Scholar
  27. 27.
    K. Sathyamoorthy, C. Vijayan, M.P. Kothiyal, J. Phys. D Appl. Phys. 40, 6121 (2007)CrossRefGoogle Scholar
  28. 28.
    K. Jamshidi-Ghalen, S. Salmani, M.H.M. Ara, Opt. Commun. 271, 551 (2007)CrossRefGoogle Scholar
  29. 29.
    G. Zhang, D. Cao, Z. Liu, G. Li, Acta Chim. Slov. 55, 315 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Crystal GrowthVIT UniversityVelloreIndia
  2. 2.Department of PhysicsLoyola CollegeChennaiIndia

Personalised recommendations