Advertisement

Influence of PNN on the structure and electronic properties of BSPT ceramics

  • Xuefei Meng
  • Qiang Chen
  • Hao Fu
  • Hong Liu
  • Jianguo Zhu
Article
  • 13 Downloads

Abstract

The influence of Pb(Ni1/3Nb2/3)O3 (PNN) on the structure and electronic properties of 0.36BiScO3–0.64PbTiO3 (BSPT) piezoelectric ceramics which were synthesized by the conventional solid-state synthesis have been systematically investigated. It was found that the ceramics with lower PNN content exhibited normal ferroelectric behavior. However, the ceramics showed a diffused phase transition characteristic as PNN content increased. The BSPT–xPNN ceramics when x = 1% showed enhanced piezoelectric properties with piezoelectric constant d33 = 531 pC/N, planar electromechanical coupling factors kp = 0.58, remnant polarization Pr = 34.6 µC/cm2, and coercive field Ec = 12.0 kV/cm with a high Curie temperature TC = 417 °C. The enhanced piezoelectric/ferroelectric properties and higher Curie temperature of the BSPT–xPNN ceramics are mainly ascribed to the lower level of the tetragonality and lower tolerance factor. As result, this material system is one of the promising candidates for high temperature piezoelectric applications.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (51332003). The authors would grateful to Prof. Hui Wang (Analytic and Testing Center of Sichuan University) for the SEM analysis.

References

  1. 1.
    Y. Bar-Cohen High temperature drilling machines. High temperature materials and mechanisms (CRC Press, Boca Raton, 2014), pp. 426–430Google Scholar
  2. 2.
    D. Damjanovic, Curr. Opin. Solid State Mater. Sci. 3, 469–473 (1998)CrossRefGoogle Scholar
  3. 3.
    Y.J. Cha, I.T. Seo, I.Y. Kang, S.B. Shin, J.H. Choi, S. Nahm, Appl. Phys. 110(8), 084111 (2011)CrossRefGoogle Scholar
  4. 4.
    J. Du, J. Qiu, K. Zhu, H. Ji, 39(8), (2013) 9385–9390Google Scholar
  5. 5.
    H. Irie, M. Miyayama, T. Kudo, J. Appl. Phys. 90, 4089–4094 (2001)CrossRefGoogle Scholar
  6. 6.
    M.E. Lines, A.M. Glass, Principles and applications of ferroelectrics and related materials (Clarendon, Oxford, 1979), p. 118Google Scholar
  7. 7.
    R.Z. Hou, X.M. Chen, J. Mater. Res. 20, 2354 (2005)CrossRefGoogle Scholar
  8. 8.
    R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.E. Park, Jpn. J. Appl. Phys. 40, 5999–6002 (2001)CrossRefGoogle Scholar
  9. 9.
    Q. Li, D. Xiao, J. Zhu, J Inorgan Mater 26(2), 185–190 (2011)CrossRefGoogle Scholar
  10. 10.
    Y. Jiang, B. Qin, Y. Zhao, Y. Jiang, D. Xiao, J. Zhu, Phys. Stat. Sol. (RRL) 2, 28 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Zhang, R.E. Eitel, C.A. Randall, T.R. Shrout, Appl. Phys. Lett. 86, 262904 (2005)CrossRefGoogle Scholar
  12. 12.
    T.L. Zhao, J. Chen, C.M. Wang, Y. Yu, J. Appl. Phys. 114, 27014 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Chen, Y. Ma, D. Xue, MEITA, 853–957 (2015)Google Scholar
  14. 14.
    V.V. Shvartsman, W. Kleemann, J. Dec, Z.K. Xu, S.G. Lu, J. Appl. Phys. 99, 321 (2006)CrossRefGoogle Scholar
  15. 15.
    Y. Chen, J. Zhu, D. Xiao, B. Qin, Y. Jiang, J. Alloy Compd. 470, 420–423 (2009)CrossRefGoogle Scholar
  16. 16.
    T. Sebastian, I. Sterianou, D. C. Sinclair. J. Electroceram. 25(2–4), 130–134 (2010)CrossRefGoogle Scholar
  17. 17.
    J. Wu, Y. Yu, X. Li, X. Gao, S. Dong, J. Am. Ceram. Soc. 98, 208 (2015)Google Scholar
  18. 18.
    N.V. Golubko, G.M. Kaleva, A.V. Mosunov, E.D. Politova, A.H. Segalla, Mater. Sci. Eng. 123, 12–13 (2016)Google Scholar
  19. 19.
    N.V. Golubko, G.M. Kaleva, A.V. Mosunov, E.D. Politova, N.V. Sadovskaya, S.Y. Stefanovich, A.H. Segalla, Ferroelectrics 485, 95–100 (2015)CrossRefGoogle Scholar
  20. 20.
    N. Vittayakorn, G. Rujijanagul, X. Tan, M.A. Marquardt, D.P. Cann, J. Appl. Phys. 96(9), 5103–5109 (2004)CrossRefGoogle Scholar
  21. 21.
    Z. Yao, H. Liu, H. Hao, M. Cao, J. Appl. Phys. 109, 5999 (2011)Google Scholar
  22. 22.
    Y. Chen, S. Xie, Q. Wang, L. Fu, R. Nie, J. Zhu, Mater. Res. Bull. 29, 1232–1237 (2017)Google Scholar
  23. 23.
    M. Roy, P. Dave, S.K. Barbar, S. Jangid, D.M. Phase, A.M. Awasthi, J. Therm. Anal. Calorim. 101(3), 833–837 (2010)CrossRefGoogle Scholar
  24. 24.
    CRC Handbook of Chemistry and Physics 2014–2015 (Taylor, Dordrecht, 2014), pp. 10–13Google Scholar
  25. 25.
    Y.J. Cha, I.T. Seo, I.Y. Kang, S.B. Shin, J.H. Choi, S. Nahm, T.H. Seung, J.H. Paik, J. Appl. Phys. 110, 32903 (2011)CrossRefGoogle Scholar
  26. 26.
    N. Luo, L. Qiang, Z. Xia, Mater. Res. Bull. 46, 1333 (2011)CrossRefGoogle Scholar
  27. 27.
    N. Se-Rer, L.E. Cross, J. Mater. Sci. 15, 2478–2482 (1980)CrossRefGoogle Scholar
  28. 28.
    E.D. Politova, N.V. Golubko, G.M. Kaleva, A.V. Mosunov, S.Y. Stefanovich, A.H. Segalla, Ferroelectrics 479, 35 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Chen, H. Shi, G. Liu, J. Cheng, S. Dong, J. Alloy Compd. 537, 280 (2012)CrossRefGoogle Scholar
  30. 30.
    Y.Q. Li, H.X. Liu, Z.H. Yao, J. Xu, Y.J. Cui, H. Hao, M.H. Cao, Z.Y. Yu, Mater. Sci. Forum 654, 2045 (2010)CrossRefGoogle Scholar
  31. 31.
    K. Uchino, S. Nomura, Ferroelectrics 44, 55 (1982)CrossRefGoogle Scholar
  32. 32.
    Y. Jiang, Y. Zhao, B. Qin, Y. Jiang, W. Shi, L. Li, D. Xiao, J. Zhu, Appl. Phys. Lett. 93, 22904 (2008)CrossRefGoogle Scholar
  33. 33.
    E.D. Politova, G.M. Kaleva, A.V. Mosunov, A.H. Segalla, Phys Scripta 89, 39 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xuefei Meng
    • 1
  • Qiang Chen
    • 1
  • Hao Fu
    • 1
  • Hong Liu
    • 1
  • Jianguo Zhu
    • 1
  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduChina

Personalised recommendations