Advertisement

Effects of barium ions non-stoichiometry on the microstructure and microwave properties of BaCo2V2O8 ceramics

Article
  • 44 Downloads

Abstract

The effects of barium ions non-stoichiometry on the phase composition, microstructure, and microwave properties of Ba1+xCo2V2O8 (x = 0–0.5) ceramics were studied. XRD results show that the single phase of BaCo2V2O8 was found in the composition of x equal to zero while a secondary phase of Ba2V2O7 started to precipitate at 0.5 ≥ x ≥ 0.2, as confirmed by SEM and EDX. The appearance of Ba2V2O7 phase with higher sintering temperature is the main reason of the increase of the optimum sintering temperature of the system. The comparisons between theoretical and experimental values of microwave dielectric properties indicate that the appearance of second phase (Ba2V2O7) leads to the decrease of dielectric constant and the improvement of the temperature coefficient of frequency and the quality factor values. Ba1.5Co2V2O8 ceramic sintered at 925 °C showed good properties: εr = 11.5, Q  × f = 47,230 GHz and τf = − 32.1 ppm/°C.

References

  1. 1.
    B. Li, J. Zheng, W. Li, Influence of cobalt ions non-stoichiometry on the microstructure and microwave properties of Ca5Co4(VO4)(6) ceramics. Ceram. Int. 43, 13956–13962 (2017)CrossRefGoogle Scholar
  2. 2.
    H.F. Zhou, K.G. Wang, W.D. Sun, X.L. Chen, H. Ruan, Phase composition, singtering behavior and microwave dielectric properties of M2BiLi2V3O12 (M = Zn, Ca) low temperature co-fired ceramics. Mater. Lett. 217, 20–22 (2018)CrossRefGoogle Scholar
  3. 3.
    M.K. Zitani, T. Ebadzadeh, S. Banijamali, R. Riahifar, C. Ruessel, S.K. Abkenar, H. Ren, High quality factor microwave dielectric diopside glass-ceramics for the low temperature co-fired ceramic (LTCC) applications. J. Non-Cryst. Solids 487, 65–71 (2018)CrossRefGoogle Scholar
  4. 4.
    E. Li, H. Yang, H. Yang, S. Zhang, Effects of Li2O-B2O3-SiO2 glass on the low-temperature sintering of Zn0.15Nb0.3Ti0.55O2 ceramics. Ceram. Int. 44, 8072–8080 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Chen, W. Li, D.-G. Zhu, Sintering behaviors, phases, and dielectric properties of MO-TeO2-V2O5 (M = Ca, Sr, Ba) ultralow temperature ceramics. Mater. Res. Bull. 101, 29–38 (2018)CrossRefGoogle Scholar
  6. 6.
    M.-R. Joung, J.-S. Kim, M.-E. Song, S. Nahm, J.-H. Paik, Low-temperature sintering and microwave dielectric properties of the Li2CO3-added Ba2V2O7 ceramics. J. Am. Ceram. Soc. 93, 934–936 (2010)CrossRefGoogle Scholar
  7. 7.
    C. Li, H. Xiang, L. Fang, Temperature stable microwave dielectric ceramics in LiCa3-x Sr (x) MgV3O12 ceramics. J. Mater. Sci-Mater. Electron. 27, 10958–10962 (2016)CrossRefGoogle Scholar
  8. 8.
    A.N. Unnimaya, E.K. Suresh, R. Ratheesh, Crystal structure and microwave dielectric properties of new alkaline earth vanadate A(4)V(2)O(9) (A = Ba, Sr, Ca, Mg and Zn) ceramics for LTCC applications. Mater. Res. Bull. 88, 174–181 (2017)CrossRefGoogle Scholar
  9. 9.
    X.H. Tan, H.F. Zhou, J. Huang, N. Wang, G.C. Fan, X.L. Chen, Phase composition, crystal structure, and microwave dielectric properties of 4BaO-4SiO(2)-V2O5 composite ceramic. J. Electron. Mater. 46, 5950–5956 (2017)CrossRefGoogle Scholar
  10. 10.
    C.C. Li, Z.H. Wei, H. Luo, L. Fang, Sintering behavior and microwave dielectric properties of LiMVO4 (M = Mg, Zn). J. Mater. Sci-Mater. Electron. 26, 9117–9121 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Wang, R. Zuo, Structure and microwave dielectric properties of Ba1-xSrxMg2V2O8 ceramics. Ceram. Int. 42, 10801–10807 (2016)CrossRefGoogle Scholar
  12. 12.
    K.P. Surendran, M.T. Sebastian, P. Mohanan, R.L. Moreira, A. Dias, Effect of nonstoichiometry on the structure and microwave dielectric properties of Ba(Mg0.33Ta0.67)O3. Chem. Mater. 17, 142–151 (2008)CrossRefGoogle Scholar
  13. 13.
    W. Liu, Y. Wang, R. Zuo, Effect of non-stoichiometry on the structure and microwave dielectric properties of BaMg2V2O8 ceramics. J. Mater. Sci-Mater. Electron. 28, 16192–16198 (2017)CrossRefGoogle Scholar
  14. 14.
    M.R. Joung, J.S. Kim, M.E. Song, S. Nahm, J.H. Paik, Formation process and microwave dielectric properties of the R2V2O7 (R = Ba, Sr, and Ca) Ceramics. J. Am. Ceram. Soc. 92, 3092–3094 (2009)CrossRefGoogle Scholar
  15. 15.
    T. Hanai, Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions. Kolloid-Zeitschrift 171, 23–31 (1960)CrossRefGoogle Scholar
  16. 16.
    H. Xiang, C. Li, C. Yin, Y. Tang, L. Fang, A reduced sintering temperature and improvement in the microwave dielectric properties of Li2Mg3TiO6 through Ge substitution. Ceram. Int. 44, 5817–5821 (2018)CrossRefGoogle Scholar
  17. 17.
    X. Jiang, C. Li, C. Su, Z. Wei, L. Fang, Low temperature firing and microwave dielectric properties of BaCaV2O7 ceramics. Ceram. Int. 41, 5172–5176 (2015)CrossRefGoogle Scholar
  18. 18.
    E.K. Suresh, K. Prasad, N.S. Arun, R. Ratheesh, Synthesis and microwave dielectric properties of A16V18O61 (A = Ba, Sr and Ca) ceramics for LTCC applications. J. Electron. Mater. 45, 2996–3002 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations