Improved electrochemical performance of rGO/TiO2 nanosheet composite based electrode for supercapacitor applications

  • Shashank Sundriyal
  • Meenu Sharma
  • Ashwinder Kaur
  • Sunita MishraEmail author
  • Akash DeepEmail author


The present work reports the synthesis of a composite of TiO2 nanosheets (NS) with reduced graphene oxide (rGO) for supercapacitor applications. The formation of composite has been achieved via a simple one-pot hydrothermal method. The rGO/TiO2 NS composite was used to fabricate a flexible electrode which, in presence of 1 M H2SO4 as an electrolyte, has shown a high specific capacitance of 233.67 F/g at a current density of 1 A/g within a potential window of 0–1 V. This enhanced supercapacitance of the rGO/TiO2 NS electrode is attributed to the synergistic effects from TiO2 and rGO NS which help in to attain a low equivalent series resistance and enhanced ion diffusion. Furthermore, the fabricated composite electrode has displayed a long-term cyclic stability, retaining a specific capacitance of 98.2% even after 2000 charge–discharge cycles. The proposed rGO/TiO2 NS electrode has delivered high values of energy (32.454 Wh/kg) and power (716.779 W/kg) densities. Interestingly, it is possible to retrieve a sufficiently high energy density of 24.576 Wh/kg which could generate a power density value of as high as 2142.84 W/kg. The above results reveal that the herein proposed thin film composite of rGO/TiO2 NS can offer extraordinary performance as a supercapacitor electrode compared to its nanotubes or nanoparticles.



Shashank Sundriyal gratefully acknowledges the Senior Research Fellowship received from the University Grant Commission, India. The funding from the CSIR India project Grant No. MLP-023 is also acknowledged. Authors also thank Director CSIO, Chandigarh.


  1. 1.
    P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Nat. Mater. 11, 19 (2012)CrossRefGoogle Scholar
  2. 2.
    R. Ramachandran, S.-M. Chen, G.G. Kumar, Int. J. Electrochem. Sci. 10, 10355 (2015)Google Scholar
  3. 3.
    N. Devillers, S. Jemei, M.-C. Péra, D. Bienaimé, F. Gustin, J. Power Sources 246, 596 (2014)CrossRefGoogle Scholar
  4. 4.
    T. Brousse, D. Bélanger, J.W. Long, J. Electrochem. Soc. 162, A5185 (2015)CrossRefGoogle Scholar
  5. 5.
    P.J. Hall, M. Mirzaeian, S.I. Fletcher et al., Energy Environ. Sci. 3, 1238 (2010)CrossRefGoogle Scholar
  6. 6.
    H. Jiang, L. Yang, C. Li, C. Yan, P.S. Lee, J. Ma, Energy Environ. Sci. 4, 1813 (2011)CrossRefGoogle Scholar
  7. 7.
    P. Simon, T. Brousse, F. Favier, Supercapacitors Based on Carbon or Pseudocapacitive Materials (Wiley, Hoboken, 2017), p. 39CrossRefGoogle Scholar
  8. 8.
    L.L. Zhang, X. Zhao, Chem. Soc. Rev. 38, 2520 (2009)CrossRefGoogle Scholar
  9. 9.
    J.-M. Tarascon, M. Armand, Nature 414, 359 (2001)CrossRefGoogle Scholar
  10. 10.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)CrossRefGoogle Scholar
  11. 11.
    B.E. Conway (2013) Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, New York, 2013)Google Scholar
  12. 12.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)CrossRefGoogle Scholar
  13. 13.
    S. Sundriyal, H. Kaur, S.K. Bhardwaj, S. Mishra, K.-H. Kim, A. Deep, Coord. Chem. Rev. 369, 15 (2018)CrossRefGoogle Scholar
  14. 14.
    K.S. Novoselov, A. Geim, Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  15. 15.
    P. Simon, T. Brousse, F. Favier, (2017) Supercapacitors Based on Carbon or Pseudocapacitive Materials (Wiley, Hoboken, 2017) p. 1Google Scholar
  16. 16.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin et al., ACS Nano 4, 4806–4814 (2010)CrossRefGoogle Scholar
  17. 17.
    W. Humers, R. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  18. 18.
    K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Science 306, 666 (2004)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, Z. Shi, Y. Huang et al., J. Phys. Chem. C 113, 13103 (2009)CrossRefGoogle Scholar
  20. 20.
    Y. Huang, J. Liang, Y. Chen, Small 8, 1805 (2012)CrossRefGoogle Scholar
  21. 21.
    J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Carbon 48, 3825 (2010)CrossRefGoogle Scholar
  22. 22.
    J.W. Lee, A.S. Hall, J.-D. Kim, T.E. Mallouk, Chem. Mater. 24, 1158 (2012)CrossRefGoogle Scholar
  23. 23.
    C. Lokhande, D. Dubal, O.-S. Joo, Curr. Appl. Phys. 11, 255 (2011)CrossRefGoogle Scholar
  24. 24.
    Y. Wang, C.Y. Foo, T.K. Hoo, M. Ng, J. Lin, Chem.-Eur. J. 16, 3598 (2010)CrossRefGoogle Scholar
  25. 25.
    D.P. Dubal, R. Holze, J. Power Sources 238, 274 (2013)CrossRefGoogle Scholar
  26. 26.
    D.P. Dubal, J.G. Kim, Y. Kim, R. Holze, W.B. Kim, Energy Technol. 1, 125 (2013)CrossRefGoogle Scholar
  27. 27.
    G.S. Gund, D.P. Dubal, B.H. Patil, S.S. Shinde, C.D. Lokhande, Electrochim. Acta 92, 205 (2013)CrossRefGoogle Scholar
  28. 28.
    U. Patil, R. Salunkhe, K. Gurav, C. Lokhande, Appl. Surf. Sci. 255, 2603 (2008)CrossRefGoogle Scholar
  29. 29.
    M. Salari, S.H. Aboutalebi, K. Konstantinov, H.K. Liu, Phys. Chem. Chem. Phys. 13, 5038 (2011)CrossRefGoogle Scholar
  30. 30.
    J. Shen, B. Yan, M. Shi, H. Ma, N. Li, M. Ye, J. Mater. Chem. 21, 3415 (2011)CrossRefGoogle Scholar
  31. 31.
    C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, J. Mater. Chem. 22, 19161 (2012)CrossRefGoogle Scholar
  32. 32.
    X. Sun, M. Xie, G. Wang et al., J. Electrochem. Soc. 159, A364 (2012)CrossRefGoogle Scholar
  33. 33.
    A. Ramadoss, S.J. Kim, Carbon 63, 434 (2013)CrossRefGoogle Scholar
  34. 34.
    R. Liu, W. Guo, B. Sun, J. Pang, M. Pei, G. Zhou, Electrochim. Acta 156, 274 (2015)CrossRefGoogle Scholar
  35. 35.
    N. Ahmadi, A. Nemati, M. Bagherzadeh, J. Alloys Compd. (2018). Google Scholar
  36. 36.
    B. Endrődi, E. Kecsenovity, K. Rajeshwar, C. Janáky, ACS Appl. Energy Mater. 1, 851 (2018)CrossRefGoogle Scholar
  37. 37.
    P.A.K. Reddy, C. Manvitha, R. Boddula, S. Vattikuti, M.K. Kumar, C. Byon, Mater. Res. Bull. 98, 314 (2018)CrossRefGoogle Scholar
  38. 38.
    W. Wang, Z. Wang, J. Liu et al., Sci. Rep. 7 (2017)Google Scholar
  39. 39.
    J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Chem. Commun. 46, 1112 (2010). CrossRefGoogle Scholar
  40. 40.
    Y. Zhang, N. Zhang, Z.-R. Tang, Y.-J. Xu, Phys. Chem. Chem. Phys. 14, 9167 (2012)CrossRefGoogle Scholar
  41. 41.
    H.M. Hassan, V. Abdelsayed, S.K. Abd El Rahman et al., J. Mater. Chem. 19, 3832 (2009)CrossRefGoogle Scholar
  42. 42.
    R. Bolagam, R. Boddula, P. Srinivasan, J. Solid State Electrochem. (2017). Google Scholar
  43. 43.
    K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’Homme, I.A. Aksay, R. Car, Nano Lett. 8, 36 (2008)CrossRefGoogle Scholar
  44. 44.
    T. Jawhari, A. Roid, J. Casado, Carbon 33, 1561 (1995)CrossRefGoogle Scholar
  45. 45.
    S. Stankovich, D.A. Dikin, R.D. Piner et al., Carbon 45, 1558 (2007)CrossRefGoogle Scholar
  46. 46.
    T.-W. Kim, S.-J. Park, J. Colloid Interface Sci. 486, 287 (2017)CrossRefGoogle Scholar
  47. 47.
    A. Ghosh, Y.H. Lee, ChemSusChem 5, 480 (2012)CrossRefGoogle Scholar
  48. 48.
    Y. Zhu, S. Murali, M.D. Stoller et al., Science 332, 1537 (2011)CrossRefGoogle Scholar
  49. 49.
    J.R. Miller, A.F. Burke, Electrochem. Soc. Interface 17, 53 (2008)Google Scholar
  50. 50.
    Y. Zhang, F. Wang, H. Zhu, D. Zhang, J. Chen, Compos. A 101, 297 (2017)CrossRefGoogle Scholar
  51. 51.
    A. Ramadoss, G.-S. Kim, S.J. Kim, CrystEngComm 15, 10222 (2013)CrossRefGoogle Scholar
  52. 52.
    Z. Zhang, F. Xiao, Y. Guo, S. Wang, Y. Liu, ACS Appl. Mater. Interfaces 5, 2227 (2013)CrossRefGoogle Scholar
  53. 53.
    H. Xiao, W. Guo, B. Sun, M. Pei, G. Zhou, Electrochim. Acta 190, 104 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CSIR-Central Scientific Instrument Organisation (CSIR-CSIO)ChandigarhIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR-CSIO)ChandigarhIndia
  3. 3.Department of PhysicsNational Institute of TechnologyKurukshetraIndia
  4. 4.Department of PhysicsPunjabi UniversityPatialaIndia

Personalised recommendations