Advertisement

Improved performance and reproducibility of perovskite solar cells by jointly tuning the hole transport layer and the perovskite layer deposition

Article
  • 104 Downloads

Abstract

Solution processed organometal trihalide materials spur tremendous attention due to their unprecedented performance in photovoltaic applications. However, submicron thick perovskite films are prone to morphological defects in the form of cracks, pinholes and porosity; the traits originated from their solution phase processing and subsequent crystallization. Moreover, pinholes and cracks in the thin film of spincoated Spiro-OMeTAD hole transport layer reduce the performance reliability by forming micro shorts and weaken the defense against moisture ingress to the perovskite layer. For the large scale processing of perovskite solar cell from the economically prudent solution phase processing, morphological shortcomings of both perovskite and hole transport layers need an urgent address. By selecting non-conventional lead precursor (lead acetate) and implementing anti-solvent treatment during film deposition, we able to form pinhole free and compact perovskite film. Crack free hole conducting layer is obtained by blending Spiro-OMeTAD with a conducting polymer without compromising in the solar cell performance. A detail investigation of the charge transport and charge extraction properties of the developed hole transport layers have been carried out. The developed CH3NH3PbI3 based perovskite solar cells show improved repeatability and performance.

Notes

Acknowledgements

This work is supported by SERB extramural funding, India (No: EMR/2015/002415) and DST Nanomission, India (No: SR/NM/NT-1011/2105 (G)) CSIR fellowship 31/011(0927)/2015 EMR I.

References

  1. 1.
    S.D. Stranks, H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10(5), 391–402 (2015)CrossRefGoogle Scholar
  2. 2.
    H.H. Tsai, W.Y. Nie, J.C. Blancon, C.C.S. Toumpos, R. Asadpour, B. Harutyunyan, A.J. Neukirch, R. Verduzco, J.J. Crochet, S. Tretiak, L. Pedesseau, J. Even, M.A. Alam, G. Gupta, J. Lou, P.M. Ajayan, M.J. Bedzyk, M.G. Kanatzidis, A.D. Mohite, High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 536(7616), 312–316 (2016)CrossRefGoogle Scholar
  3. 3.
    W. Chen, Y.Z. Wu, Y.F. Yue, J. Liu, W.J. Zhang, X.D. Yang, H. Chen, E.B. Bi, I. Ashraful, M. Gratzel, L.Y. Han, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350(6263), 944–948 (2015)CrossRefGoogle Scholar
  4. 4.
    N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014)CrossRefGoogle Scholar
  5. 5.
    C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013)CrossRefGoogle Scholar
  6. 6.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)CrossRefGoogle Scholar
  7. 7.
    G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013)CrossRefGoogle Scholar
  8. 8.
    F.Y. Jiang, Y.G. Rong, H.W. Liu, T.F. Liu, L. Mao, W. Meng, F. Qin, Y.Y. Jiang, B.W. Luo, S.X. Xiong, J.H. Tong, Y. Liu, Z.F. Li, H.W. Han, Y.H. Zhou, Synergistic effect of PbI2 passivation and chlorine inclusion yielding high open-circuit voltage exceeding 1.15 V in both mesoscopic and inverted planar CH3NH3PbI3(Cl)-based perovskite solar cells. Adv. Funct. Mater. 26(44), 8119–8127 (2016)CrossRefGoogle Scholar
  9. 9.
    W.C. Yang, Y. Yao, C.Q. Wu, Origin of the high open circuit voltage in planar heterojunction perovskite solar cells: role of the reduced bimolecular recombination. J. Appl. Phys. 117(9), 095502 (2015)CrossRefGoogle Scholar
  10. 10.
    W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017)CrossRefGoogle Scholar
  11. 11.
    J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013)CrossRefGoogle Scholar
  12. 12.
    K. A.Kojima, Y. Teshima, T. Shirai, Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)CrossRefGoogle Scholar
  13. 13.
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012)CrossRefGoogle Scholar
  14. 14.
    Y.X. Zhao, K. Zhu, Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 45(3), 655–689 (2016)CrossRefGoogle Scholar
  15. 15.
    W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Horantner, T. Stergiopoulos, S.D. Stranks, G.E. Eperon, J.A. Alexander-Webber, A. Abate, A. Sadhanala, S.H. Yao, Y.L. Chen, R.H. Friend, L.A. Estroff, U. Wiesner, H.J. Snaith, Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015)CrossRefGoogle Scholar
  16. 16.
    H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)CrossRefGoogle Scholar
  17. 17.
    N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015)CrossRefGoogle Scholar
  18. 18.
    Y.C. Zhang, M. Elawad, Z. Yu, X.Q. Jiang, J.B. Lai, L.C. Sun, Enhanced performance of perovskite solar cells with P3HT hole-transporting materials via molecular p-type doping. Rsc Adv. 6(110), 108888–108895 (2016)CrossRefGoogle Scholar
  19. 19.
    P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, M. Gratzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5, 3834 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Karuppuchamy, G. Murugadoss, K. Ramachandran, V. Saxena, R. Thangamuthu, Inorganic based hole transport materials for perovskite solar cells. J. Mater. Sci. Mater. Electron. 29(10), 8847–8853 (2018)CrossRefGoogle Scholar
  21. 21.
    S. Chatterjee, A.J. Pal, Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures. J. Phys. Chem. C 120(3), 1428–1437 (2016)CrossRefGoogle Scholar
  22. 22.
    J.R. Manders, S.W. Tsang, M.J. Hartel, T.H. Lai, S. Chen, C.M. Amb, J.R. Reynolds, F. So, Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 23(23), 2993–3001 (2013)CrossRefGoogle Scholar
  23. 23.
    S. Weber, T. Rath, J. Mangalam, B. Kunert, A.M. Coclite, M. Bauch, T. Dimopoulos, G. Trimmel, Investigation of NiOx-hole transport layers in triple cation perovskite solar cells. J. Mater. Sci. Mater. Electron. 29(3), 1847–1855 (2018)CrossRefGoogle Scholar
  24. 24.
    C. Besleaga, L.E. Abrarniuc, V. Stancu, A.G. Tomulescu, M. Sima, L. Trinca, N. Plugaru, L. Pintilie, G.A. Nemnes, M. Iliescu, H.G. Svavarsson, A. Manolescu, I. Pintilie, Iodine migration and degradation of perovskite solar cells enhanced by metallic electrodes. J. Phys. Chem. Lett. 7(24), 5168–5175 (2016)CrossRefGoogle Scholar
  25. 25.
    K. Domanski, J.P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, M. Gratzel, Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10(6), 6306–6314 (2016)CrossRefGoogle Scholar
  26. 26.
    S. Holliday, R.S. Ashraf, A. Wadsworth, D. Baran, S.A. Yousaf, C.B. Nielsen, C.H. Tan, S.D. Dimitrov, Z.R. Shang, N. Gasparini, M. Alamoudi, F. Laquai, C.J. Brabec, A. Salleo, J.R. Durrant, I. McCulloch, High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 11585 (2016)CrossRefGoogle Scholar
  27. 27.
    M. Zhang, H. Yu, J.H. Yun, M.Q. Lyu, Q. Wang, L.Z. Wang, Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells. Chem. Commun. 51(49), 10038–10041 (2015)CrossRefGoogle Scholar
  28. 28.
    L. Yang, U.B. Cappel, E.L. Unger, M. Karlsson, K.M. Karlsson, E. Gabrielsson, L.C. Sun, G. Boschloo, A. Hagfeldt, E.M.J. Johansson, Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells. PCCP 14(2), 779–789 (2012)CrossRefGoogle Scholar
  29. 29.
    J.F. Wang, L. Zhu, B.G. Zhao, Y.L. Zhao, J. Song, X.Q. Gu, Y.H. Qiang, Surface engineering of perovskite films for efficient solar cells. Sci. Rep. 7, 14478 (2017)CrossRefGoogle Scholar
  30. 30.
    J.H. Im, H.S. Kim, N.G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3. APL Mater 2(8), 081510 (2014)CrossRefGoogle Scholar
  31. 31.
    W.Y. Nie, H.H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015)CrossRefGoogle Scholar
  32. 32.
    Y.G. Rong, Z.J. Tang, Y.F. Zhao, X. Zhong, S. Venkatesan, H. Graham, M. Patton, Y. Jing, A.M. Guloy, Y. Yao, Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale 7(24), 10595–10599 (2015)CrossRefGoogle Scholar
  33. 33.
    S.D. Stranks, P.K. Nayak, W. Zhang, T. Stergiopoulos, H.J. Snaith, Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells. Angew. Chem. Int. Ed. 54(11), 3240–3248 (2015)CrossRefGoogle Scholar
  34. 34.
    D. Forgacs, M. Sessolo, H.J. Bolink, Lead acetate precursor based p-i-n perovskite solar cells with enhanced reproducibility and low hysteresis. J. Mater. Chem. A 3(27), 14121–14125 (2015)CrossRefGoogle Scholar
  35. 35.
    P. Docampo, F.C. Hanusch, S.D. Stranks, M. Doblinger, J.M. Feckl, M. Ehrensperger, N.K. Minar, M.B. Johnston, H.J. Snaith, T. Bein, Solution deposition-conversion for planar heterojunction mixed halide perovskite solar cells. Adv. Energy Mater. 4(14), 1400355 (2014)CrossRefGoogle Scholar
  36. 36.
    H.R. Tan, A. Jain, O. Voznyy, X.Z. Lan, F.P.G. de Arquer, J.Z. Fan, R. Quintero-Bermudez, M.J. Yuan, B. Zhang, Y.C. Zhao, F.J. Fan, P.C. Li, L.N. Quan, Y.B. Zhao, Z.H. Lu, Z.Y. Yang, S. Hoogland, E.H. Sargent, Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355(6326), 722–726 (2017)CrossRefGoogle Scholar
  37. 37.
    P. Docampo, F.C. Hanusch, N. Giesbrecht, P. Angloher, A. Ivanova, T. Bein, Influence of the orientation of methylammonium lead iodide perovskite crystals on solar cell performance. APL Mater 2(8), 081508 (2014)CrossRefGoogle Scholar
  38. 38.
    Q. Zhou, Z. Jin, H. Li, J. Wang, Enhancing performance and uniformity of CH3NH3PbI3–xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities. Sci. Rep. 6, 21257 (2016)CrossRefGoogle Scholar
  39. 39.
    G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy. Org. Electron. 9(5), 847–851 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CSIR-National Chemical LaboratoryPuneIndia

Personalised recommendations